Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 629(8014): 1133-1141, 2024 May.
Article in English | MEDLINE | ID: mdl-38750368

ABSTRACT

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Subject(s)
Dizocilpine Maleate , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Obesity , Receptors, N-Methyl-D-Aspartate , Animals , Humans , Male , Mice , Rats , Brain Stem/metabolism , Brain Stem/drug effects , Disease Models, Animal , Dizocilpine Maleate/adverse effects , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Obesity/drug therapy , Obesity/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
2.
J Biol Chem ; : 107948, 2024 Oct 29.
Article in English | MEDLINE | ID: mdl-39481599

ABSTRACT

Substance P and neurokinin A are closely related neuropeptides belonging to the tachykinin family. Their receptors are neurokinin 1 receptor (NK1R) and neurokinin 2 receptor (NK2R), G protein-coupled receptors that transmit Gs and Gq-mediated downstream signaling. We investigate the importance of sequence differences at the bottom of the receptor orthosteric site for activity and selectivity, focusing on residues that closely interact with the C-terminal methionine of the peptide ligands. We identify a conserved serine (NK1R-S2977.45) and the position of the tryptophan residue within the canonical "toggle switch" motif, CWxP of TM6, neighboring a phenylalanine in NK1R (NK1R-F2646.51) and a tyrosine in NK2R (NK2R-Y2666.51), giving rise to distinct micro-environments for the neuropeptide C-terminals. Mutating these residues results in dramatic activity changes in both NK1R and NK2R due to a close interaction between the ligand and toggle switch. Structural analysis of active and inactive NKR structures suggest only a minor change in sidechain rotation of toggle switch residues upon activation. However, extensive molecular dynamics simulations of receptor:neuropeptide:G protein complexes indicate that a major, concerted motion happens in the toggle switch tryptophan indole group and the sidechains of the micro-switch motif PIF. This rotation establishes a tight hydrogen bond interaction from the tryptophan indole to the conserved serine (NK1R-S2977.45) and a mainchain carbonyl (NK1R-A2947.41) in the kink of TM7. This interaction facilitates communication with the NPxxY micro-switch motif of TM7, resulting in stabilization of the G protein binding region. NK1R-S2977.45 is consequently identified as a central hub for the activation of NKRs.

3.
J Biol Chem ; 299(12): 105438, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944618

ABSTRACT

The tachykinin receptors neurokinin 1 (NK1R) and neurokinin 2 (NK2R) are G protein-coupled receptors that bind preferentially to the natural peptide ligands substance P and neurokinin A, respectively, and have been targets for drug development. Despite sharing a common C-terminal sequence of Phe-X-Gly-Leu-Met-NH2 that helps direct biological function, the peptide ligands exhibit some degree of cross-reactivity toward each other's non-natural receptor. Here, we investigate the detailed structure-activity relationships of the ligand-bound receptor complexes that underlie both potent activation by the natural ligand and cross-reactivity. We find that the specificity and cross-reactivity of the peptide ligands can be explained by the interactions between the amino acids preceding the FxGLM consensus motif of the bound peptide ligand and two regions of the receptor: the ß-hairpin of the extracellular loop 2 (ECL2) and a N-terminal segment leading into transmembrane helix 1. Positively charged sidechains of the ECL2 (R177 of NK1R and K180 of NK2R) are seen to play a vital role in the interaction. The N-terminal positions 1 to 3 of the peptide ligand are entirely dispensable. Mutated and chimeric receptor and ligand constructs neatly swap around ligand specificity as expected, validating the structure-activity hypotheses presented. These findings will help in developing improved agonists or antagonists for NK1R and NK2R.


Subject(s)
Receptors, Neurokinin-1 , Tachykinins , Animals , Humans , Cell Line , Chlorocebus aethiops , Ligands , Neurokinin A/metabolism , Neurokinin-1 Receptor Antagonists , Receptors, Neurokinin-1/agonists , Receptors, Neurokinin-1/metabolism , Substance P , Tachykinins/metabolism , Receptors, Neurokinin-2/metabolism
4.
ACS Med Chem Lett ; 13(12): 1839-1847, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36518697

ABSTRACT

The free fatty acid receptors FFAR1 and FFAR4 are considered promising therapeutic targets for management of metabolic and inflammatory diseases. However, there is a need for entirely novel chemical scaffolds, since many of the highly similar lipophilic chemotypes in development have been abandoned by the pharmaceutical industry, due to toxic effects on hepatocytes and ß-cells. Our group has recently reported the discovery of a 1,3,5-triazine-2-amine-based compound that acts as an allosteric agonist on FFAR1. Here, we present the synthesis and investigation of the structure-activity relationship of an extensive set of analogues of which many display dual-acting agonist properties for both FFAR1 and FFAR4. In several rounds of optimization, we discovered multiple analogues with single-digit nanomolar potency on FFAR1. Pending additional optimization for metabolic stability, the compounds in this study present novel ways of providing beneficial glycemic control while avoiding the notorious toxicity challenges associated with previously identified chemotypes.

5.
Cell Rep ; 35(11): 109246, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34133934

ABSTRACT

Succinate functions both as a classical TCA cycle metabolite and an extracellular metabolic stress signal sensed by the mainly Gi-coupled succinate receptor SUCNR1. In the present study, we characterize and compare effects and signaling pathways activated by succinate and both classes of non-metabolite SUCNR1 agonists. By use of specific receptor and pathway inhibitors, rescue in G-protein-depleted cells and monitoring of receptor G protein activation by BRET, we identify Gq rather than Gi signaling to be responsible for SUCNR1-mediated effects on basic transcriptional regulation. Importantly, in primary human M2 macrophages, in which SUCNR1 is highly expressed, we demonstrate that physiological concentrations of extracellular succinate act through SUCNR1-activated Gq signaling to efficiently regulate transcription of immune function genes in a manner that hyperpolarizes their M2 versus M1 phenotype. Thus, sensing of stress-induced extracellular succinate by SUCNR1 is an important transcriptional regulator in human M2 macrophages through Gq signaling.


Subject(s)
Extracellular Space/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Macrophages/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Succinic Acid/metabolism , Arrestins/metabolism , Female , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Gene Expression Regulation , Gene Ontology , HEK293 Cells , Humans , Ligands , Macrophages/immunology , Male , Models, Biological , Protein Subunits/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Transcriptional Activation/genetics , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL