Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Cell ; 183(3): 684-701.e14, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33058756

ABSTRACT

Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.


Subject(s)
Metabolic Diseases/genetics , MicroRNAs/genetics , Adipocytes, Brown/pathology , Adiposity , Alleles , Animals , Cell Differentiation , Cell Line , Cells, Cultured , Diet, High-Fat , Energy Metabolism , Epigenesis, Genetic , Genetic Loci , Glucose/metabolism , Homeostasis , Humans , Hypertrophy , Insulin Resistance , Leptin/deficiency , Leptin/metabolism , Male , Mammals/genetics , Mice, Inbred C57BL , Mice, Obese , MicroRNAs/metabolism , Obesity/genetics , Oligonucleotides/metabolism , Species Specificity
2.
Genome Res ; 30(7): 1060-1072, 2020 07.
Article in English | MEDLINE | ID: mdl-32718982

ABSTRACT

Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.


Subject(s)
RNA, Long Noncoding/physiology , Cell Growth Processes/genetics , Cell Movement/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , KCNQ Potassium Channels/metabolism , Molecular Sequence Annotation , Oligonucleotides, Antisense , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , RNA, Small Interfering
3.
Int J Mol Sci ; 24(16)2023 08 17.
Article in English | MEDLINE | ID: mdl-37629051

ABSTRACT

Obesity is a growing public health problem associated with increased risk of type 2 diabetes, cardiovascular disease, nonalcoholic fatty liver disease (NAFLD) and cancer. Here, we identify microRNA-22 (miR-22) as an essential rheostat involved in the control of lipid and energy homeostasis as well as the onset and maintenance of obesity. We demonstrate through knockout and transgenic mouse models that miR-22 loss-of-function protects against obesity and hepatic steatosis, while its overexpression promotes both phenotypes even when mice are fed a regular chow diet. Mechanistically, we show that miR-22 controls multiple pathways related to lipid biogenesis and differentiation. Importantly, genetic ablation of miR-22 favors metabolic rewiring towards higher energy expenditure and browning of white adipose tissue, suggesting that modulation of miR-22 could represent a viable therapeutic strategy for treatment of obesity and other metabolic disorders.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Non-alcoholic Fatty Liver Disease , Animals , Mice , Homeostasis , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics , MicroRNAs/genetics , Lipids
4.
PLoS Genet ; 8(2): e1002505, 2012.
Article in English | MEDLINE | ID: mdl-22383892

ABSTRACT

Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS-associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (D(ABD-GLU) = 0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response-related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS-associated versus un-associated modules (ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.8×10(-4)). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS-related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.0×10(-4)); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10(-4)) and BMI-adjusted waist-to-hip ratio (P = 2.4×10(-4)). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.


Subject(s)
Adipose Tissue/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Metabolic Syndrome/genetics , Body Mass Index , Chemokines/genetics , Female , Genetic Loci , Genome-Wide Association Study , HLA-DRB1 Chains/genetics , Humans , Intercellular Signaling Peptides and Proteins , Metabolic Syndrome/pathology , Organ Specificity , Phenotype , Quantitative Trait Loci
5.
Nature ; 452(7189): 896-9, 2008 Apr 17.
Article in English | MEDLINE | ID: mdl-18368051

ABSTRACT

microRNAs (miRNAs) are small regulatory RNAs that are important in development and disease and therefore represent a potential new class of targets for therapeutic intervention. Despite recent progress in silencing of miRNAs in rodents, the development of effective and safe approaches for sequence-specific antagonism of miRNAs in vivo remains a significant scientific and therapeutic challenge. Moreover, there are no reports of miRNA antagonism in primates. Here we show that the simple systemic delivery of a unconjugated, PBS-formulated locked-nucleic-acid-modified oligonucleotide (LNA-antimiR) effectively antagonizes the liver-expressed miR-122 in non-human primates. Acute administration by intravenous injections of 3 or 10 mg kg(-1) LNA-antimiR to African green monkeys resulted in uptake of the LNA-antimiR in the cytoplasm of primate hepatocytes and formation of stable heteroduplexes between the LNA-antimiR and miR-122. This was accompanied by depletion of mature miR-122 and dose-dependent lowering of plasma cholesterol. Efficient silencing of miR-122 was achieved in primates by three doses of 10 mg kg(-1) LNA-antimiR, leading to a long-lasting and reversible decrease in total plasma cholesterol without any evidence for LNA-associated toxicities or histopathological changes in the study animals. Our findings demonstrate the utility of systemically administered LNA-antimiRs in exploring miRNA function in rodents and primates, and support the potential of these compounds as a new class of therapeutics for disease-associated miRNAs.


Subject(s)
Chlorocebus aethiops/genetics , Gene Silencing , MicroRNAs/genetics , Oligonucleotides/genetics , Animals , Female , Mice , Mice, Inbred C57BL , Oligonucleotides/administration & dosage , Oligonucleotides/adverse effects
6.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005285

ABSTRACT

Circular RNAs are a novel class of RNA transcripts, which regulate important cellular functions in health and disease. Herein, we report on the functional relevance of the circPCMTD1 transcript in acute leukemias. In screening experiments, we found that circPCMTD1 depletion strongly inhibited the proliferative capacity of leukemic cells with BCR-ABL translocations. Mass cytometry experiments identified the aberrant activation of the DNA damage response as an early downstream event of circPCMTD1 depletion. In in vivo experiments, circPCMTD1 targeting prolonged the survival of mice engrafted with leukemic blasts harboring the Philadelphia chromosome. Mechanistically, we found that circPCMTD1 was enriched in the cytoplasm and associated with the ribosomes of the leukemic cells. We detected a cryptic open reading frame within the circPCMTD1 sequence and found that circPCMTD1 could generate a peptide product. The circPCMTD 1-derived peptide interacted with proteins of the BTR complex and enhanced BTR complex formation, thereby increasing tolerance to genotoxic stress.

7.
Nucleic Acid Ther ; 33(1): 45-57, 2023 01.
Article in English | MEDLINE | ID: mdl-36445751

ABSTRACT

Circular RNAs (circRNAs) constitute an abundant class of covalently closed noncoding RNA molecules that are formed by backsplicing from eukaryotic protein-coding genes. Recent studies have shown that circRNAs can act as microRNA or protein decoys, as well as transcriptional regulators. However, the functions of most circRNAs are still poorly understood. Because circRNA sequences overlap with their linear parent transcripts, depleting specific circRNAs without affecting host gene expression remains a challenge. In this study, we assessed the utility of LNA-modified antisense oligonucleotides (ASOs) to knock down circRNAs for loss-of-function studies. We found that, while most RNase H-dependent gapmer ASOs mediate effective knockdown of their target circRNAs, some gapmers reduce the levels of the linear parent transcript. The circRNA targeting specificity can be enhanced using design-optimized gapmer ASOs, which display potent and specific circRNA knockdown with a minimal effect on the host genes. In summary, our results demonstrate that LNA-modified ASOs complementary to backsplice-junction sequences mediate robust knockdown of circRNAs in vitro and, thus, represent a useful tool to explore the biological roles of circRNAs in loss-of-function studies in cultured cells and animal models.


Subject(s)
Oligonucleotides, Antisense , RNA, Circular , Animals , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , RNA, Circular/genetics , Oligonucleotides/genetics
8.
Sci Rep ; 12(1): 19502, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376362

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with increasing incidence in western countries. Most HCC patients have advanced cancer at the time of diagnosis due to the asymptomatic nature of early-stage HCC and do not qualify for potentially curative surgical treatment, thus, highlighting the need for new therapeutic strategies. Long noncoding RNAs (lncRNAs) comprise a large and heterogeneous group of non-protein coding transcripts that play important regulatory roles in numerous biological processes in cancer. In this study, we performed RNA sequencing of liver biopsies from ten HCC, ten hepatitis C virus-associated HCC, and four normal livers to identify dysregulated lncRNAs in HCC. We show that the lncRNA p53-upregulated-regulator-of-p53-levels (PURPL) is upregulated in HCC biopsies and that its expression is p53-dependent in liver cancer cell lines. In addition, antisense oligonucleotide-mediated knockdown of PURPL inhibited cell proliferation, induced apoptosis, and sensitized HepG2 human HCC cells to treatment with the chemotherapeutic agent doxorubicin. In summary, our findings suggest that PURPL could serve as a new therapeutic target for reversing doxorubicin resistance in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , Doxorubicin/pharmacology , Cell Line , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
9.
Cell Rep ; 41(13): 111893, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36577377

ABSTRACT

Within the scope of the FANTOM6 consortium, we perform a large-scale knockdown of 200 long non-coding RNAs (lncRNAs) in human induced pluripotent stem cells (iPSCs) and systematically characterize their roles in self-renewal and pluripotency. We find 36 lncRNAs (18%) exhibiting cell growth inhibition. From the knockdown of 123 lncRNAs with transcriptome profiling, 36 lncRNAs (29.3%) show molecular phenotypes. Integrating the molecular phenotypes with chromatin-interaction assays further reveals cis- and trans-interacting partners as potential primary targets. Additionally, cell-type enrichment analysis identifies lncRNAs associated with pluripotency, while the knockdown of LINC02595, CATG00000090305.1, and RP11-148B6.2 modulates colony formation of iPSCs. We compare our results with previously published fibroblasts phenotyping data and find that 2.9% of the lncRNAs exhibit a consistent cell growth phenotype, whereas we observe 58.3% agreement in molecular phenotypes. This highlights that molecular phenotyping is more comprehensive in revealing affected pathways.


Subject(s)
Induced Pluripotent Stem Cells , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Induced Pluripotent Stem Cells/metabolism , Oligonucleotides, Antisense , Gene Expression Profiling/methods , Embryonic Stem Cells/metabolism
10.
Nucleic Acids Res ; 37(17): 5784-92, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19596814

ABSTRACT

microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine macrophages and human monocytic cells uncovered marked changes in the expression of granulocyte colony-stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression in mouse splenocytes. Finally, we report for the first time on miR-155 silencing in vivo in a mouse inflammation model, which underscores the potential of miR-155 antagonists in the development of novel therapeutics for treatment of chronic inflammatory diseases.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/genetics , Gene Expression Regulation , Granulocyte Colony-Stimulating Factor/genetics , Inflammation/genetics , MicroRNAs/physiology , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Down-Regulation , Female , Gene Silencing , Granulocyte Colony-Stimulating Factor/metabolism , Humans , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/biosynthesis , Protein Biosynthesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Spleen/immunology
11.
Sci Rep ; 11(1): 11023, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040017

ABSTRACT

BRAF inhibitors (BRAFi) selectively target oncogenic BRAFV600E/K and are effective in 80% of advanced cutaneous malignant melanoma cases carrying the V600 mutation. However, the development of drug resistance limits their clinical efficacy. Better characterization of the underlying molecular processes is needed to further improve treatments. We previously demonstrated that transcription of PTEN is negatively regulated by the PTEN pseudogene antisense RNA, PTENP1-AS, and here we investigated the impact of this transcript on clinical outcome and BRAFi resistance in melanoma. We observed that increased expression levels of PTENP1-AS in BRAFi resistant cells associated with enrichment of EZH2 and H3K27me3 at the PTEN promoter, consequently reducing the expression levels of PTEN. Further, we showed that targeting of the PTENP1-AS transcript sensitized resistant cells to BRAFi treatment and that high expression of PTENP1-AS in stage III melanoma correlated with poor survival. Collectively, the data presented here show that PTENP1-AS is a promising target for re-sensitizing cells to BRAFi and also a possible prognostic marker for clinical outcome in stage III melanoma.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Skin Neoplasms , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Humans , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Vemurafenib/pharmacology , Melanoma, Cutaneous Malignant
13.
Noncoding RNA ; 7(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379241

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. Although significant progress has been made in recent years to treat DLBCL patients, 30%-40% of the patients eventually relapse or are refractory to first line treatment, calling for better therapeutic strategies for DLBCL. Long non-coding RNAs (lncRNAs) have emerged as a highly diverse group of non-protein coding transcripts with intriguing molecular functions in human disease, including cancer. Here, we review the current understanding of lncRNAs in the pathogenesis and progression of DLBCL to provide an overview of the field. As the current knowledge of lncRNAs in DLBCL is still in its infancy, we provide molecular signatures of lncRNAs in DLBCL cell lines to assist further lncRNA research in DLBCL.

14.
Blood Adv ; 4(2): 239-251, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31945158

ABSTRACT

Circular RNAs (circRNAs) are noncoding RNA molecules that display a perturbed arrangement of exons, called backsplicing. To examine the prognostic and biologic significance of circRNA expression in cytogenetically normal acute myeloid leukemia (CN-AML), we conducted whole-transcriptome profiling in 365 younger adults (age 18-60 years) with CN-AML. We applied a novel pipeline, called Massive Scan for circRNA, to identify and quantify circRNA expression. We validated the high sensitivity and specificity of our pipeline by performing RNase R treatment and RNA sequencing in samples of AML patients and cell lines. Unsupervised clustering analyses identified 3 distinct circRNA expression-based clusters with different frequencies of clinical and molecular features. After dividing our cohort into training and validation data sets, we identified 4 circRNAs (circCFLAR, circKLHL8, circSMC1A, and circFCHO2) that were prognostic in both data sets; high expression of each prognostic circRNA was associated with longer disease-free, overall, and event-free survival. In multivariable analyses, high circKLHL8 and high circFCHO2 expression were independently associated with better clinical outcome of CN-AML patients, after adjusting for other covariates. To examine the biologic relevance of circRNA expression, we performed knockdown screening experiments in a subset of prognostic and gene mutation-related candidate circRNAs. We identified circFBXW7, but not its linear messenger RNA, as a regulator of the proliferative capacity of AML blasts. In summary, our findings underscore the molecular associations, prognostic significance, and functional relevance of circRNA expression in CN-AML.


Subject(s)
Cytogenetics/methods , Leukemia, Myeloid, Acute/genetics , RNA, Circular/metabolism , Adolescent , Adult , Female , Humans , Male , Middle Aged , Prognosis , Young Adult
18.
Cell Res ; 29(8): 628-640, 2019 08.
Article in English | MEDLINE | ID: mdl-31209250

ABSTRACT

circRNAs arise from back splicing events during mRNA processing, and when deregulated can play an active role in cancer. Here we characterize a new circRNA (circPOK) encoded by the Zbtb7a gene (also kown as POKEMON, LRF) in the context of mesenchymal tumor progression. circPOK functions as a non-coding proto-oncogenic RNA independently and antithetically to its linear transcript counterpart, which acts as a tumor suppressor by encoding the Pokemon transcription factor. We find that circPOK regulates pro-proliferative and pro-angiogenic factors by co-activation of the ILF2/3 complex. Importantly, the expression of Pokemon protein and circRNA is aberrantly uncoupled in cancer through differential post-transcriptional regulation. Thus, we identify a novel type of genetic unit, the iRegulon, that yields biochemically distinct RNA products, circular and linear, with diverse and antithetical functions. Our findings further expand the cellular repertoire towards the control of normal biological outputs, while aberrant expression of such components may underlie disease pathogenesis including cancer.


Subject(s)
Carcinogenesis/genetics , DNA-Binding Proteins/genetics , RNA, Circular/genetics , Sarcoma/genetics , Transcription Factors/genetics , Alternative Splicing/genetics , Animals , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Exons , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , HEK293 Cells , Humans , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogenes/genetics , RNA, Small Interfering/genetics , Sarcoma/pathology , Transcription Factors/metabolism , Transfection
19.
Nat Commun ; 10(1): 5351, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31767858

ABSTRACT

Long non-coding RNAs (lncRNAs) are important regulatory molecules that are implicated in cellular physiology and pathology. In this work, we dissect the functional role of the HOXB-AS3 lncRNA in patients with NPM1-mutated (NPM1mut) acute myeloid leukemia (AML). We show that HOXB-AS3 regulates the proliferative capacity of NPM1mut AML blasts in vitro and in vivo. HOXB-AS3 is shown to interact with the ErbB3-binding protein 1 (EBP1) and guide EBP1 to the ribosomal DNA locus. Via this mechanism, HOXB-AS3 regulates ribosomal RNA transcription and de novo protein synthesis. We propose that in the context of NPM1 mutations, HOXB-AS3 overexpression acts as a compensatory mechanism, which allows adequate protein production in leukemic blasts.


Subject(s)
Leukemia, Myeloid/genetics , Mutation , Nuclear Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Ribosomal/genetics , Transcription, Genetic , Acute Disease , Animals , Cell Line, Tumor , Cell Proliferation , HEK293 Cells , Humans , K562 Cells , Leukemia, Myeloid/pathology , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Nucleophosmin , Protein Biosynthesis/genetics , THP-1 Cells , Transplantation, Heterologous
20.
Nucleic Acid Ther ; 28(5): 273-284, 2018 10.
Article in English | MEDLINE | ID: mdl-30133337

ABSTRACT

The Ebola virus is a zoonotic pathogen that can cause severe hemorrhagic fever in humans, with up to 90% lethality. The deadly 2014 Ebola outbreak quickly made an unprecedented impact on human lives. While several vaccines and therapeutics are under development, current approaches contain several limitations, such as virus mutational escape, need for formulation or refrigeration, poor scalability, long lead-time, and high cost. To address these challenges, we developed locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) to target critical Ebola viral proteins and the human intracellular host protein Niemann-Pick C1 (NPC1), required for viral entry into infected cells. We generated noninfectious viral luciferase reporter assays to identify LNA ASOs that inhibit translation of Ebola viral proteins in vitro and in human cells. We demonstrated specific inhibition of key Ebola genes VP24 and nucleoprotein, which inhibit a proper immune response and promote Ebola virus replication, respectively. We also identified LNA ASOs targeting human host factor NPC1 and demonstrated reduced infection by chimeric vesicular stomatitis virus harboring the Ebola glycoprotein, which directly binds to NPC1 for viral infection. These results support further in vivo testing of LNA ASOs in infectious Ebola virus disease animal models as potential therapeutic modalities for treatment of Ebola.


Subject(s)
Hemorrhagic Fever, Ebola/genetics , Niemann-Pick C1 Protein/genetics , Oligonucleotides, Antisense/genetics , Viral Proteins/genetics , Animals , Disease Models, Animal , Ebolavirus/genetics , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/therapy , Hemorrhagic Fever, Ebola/virology , Humans , Immunity, Innate/genetics , Mice , Niemann-Pick C1 Protein/antagonists & inhibitors , Nucleoproteins/antagonists & inhibitors , Nucleoproteins/genetics , Oligonucleotides/genetics , Oligonucleotides/therapeutic use , Oligonucleotides, Antisense/therapeutic use , Primates/virology , Viral Proteins/antagonists & inhibitors , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL