Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Arch Biochem Biophys ; 729: 109392, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36096178

ABSTRACT

Protein phosphorylation is a common phenomenon in human flavoproteins although the functional consequences of this site-specific modification are largely unknown. Here, we evaluated the effects of site-specific phosphorylation (using phosphomimetic mutations at sites S40, S82 and T128) on multiple functional aspects as well as in the structural stability of the antioxidant and disease-associated human flavoprotein NQO1 using biophysical and biochemical methods. In vitro biophysical studies revealed effects of phosphorylation at different sites such as decreased binding affinity for FAD and structural stability of its binding site (S82), conformational stability (S40 and S82) and reduced catalytic efficiency and functional cooperativity (T128). Local stability measurements by H/D exchange in different ligation states provided structural insight into these effects. Transfection of eukaryotic cells showed that phosphorylation at sites S40 and S82 may reduce steady-levels of NQO1 protein by enhanced proteasome-induced degradation. We show that site-specific phosphorylation of human NQO1 may cause pleiotropic and counterintuitive effects on this multifunctional protein with potential implications for its relationships with human disease. Our approach allows to establish relationships between site-specific phosphorylation, functional and structural stability effects in vitro and inside cells paving the way for more detailed analyses of phosphorylation at the flavoproteome scale.


Subject(s)
NAD(P)H Dehydrogenase (Quinone) , Neoplasms , Antioxidants/metabolism , Flavin-Adenine Dinucleotide/chemistry , Flavoproteins/metabolism , Humans , Mutation , NAD(P)H Dehydrogenase (Quinone)/metabolism , Neoplasms/genetics , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Binding
2.
Molecules ; 27(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36557898

ABSTRACT

The mutations G170R and I244T are the most common disease cause in primary hyperoxaluria type I (PH1). These mutations cause the misfolding of the AGT protein in the minor allele AGT-LM that contains the P11L polymorphism, which may affect the folding of the N-terminal segment (NTT-AGT). The NTT-AGT is phosphorylated at T9, although the role of this event in PH1 is unknown. In this work, phosphorylation of T9 was mimicked by introducing the T9E mutation in the NTT-AGT peptide and the full-length protein. The NTT-AGT conformational landscape was studied by circular dichroism, NMR, and statistical mechanical methods. Functional and stability effects on the full-length AGT protein were characterized by spectroscopic methods. The T9E and P11L mutations together reshaped the conformational landscape of the isolated NTT-AGT peptide by stabilizing ordered conformations. In the context of the full-length AGT protein, the T9E mutation had no effect on the overall AGT function or conformation, but enhanced aggregation of the minor allele (LM) protein and synergized with the mutations G170R and I244T. Our findings indicate that phosphorylation of T9 may affect the conformation of the NTT-AGT and synergize with PH1-causing mutations to promote aggregation in a genotype-specific manner. Phosphorylation should be considered a novel regulatory mechanism in PH1 pathogenesis.


Subject(s)
Polymorphism, Genetic , Protein Aggregates , Humans , Phosphorylation , Mutation , Genotype , Transaminases/metabolism
3.
Hum Mol Genet ; 28(1): 1-15, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30215702

ABSTRACT

Most pathogenic missense mutations cause specific molecular phenotypes through protein destabilization. However, how protein destabilization is manifested as a given molecular phenotype is not well understood. We develop here a structural and energetic approach to describe mutational effects on specific traits such as function, regulation, stability, subcellular targeting or aggregation propensity. This approach is tested using large-scale experimental and structural perturbation analyses in over thirty mutations in three different proteins (cancer-associated NQO1, transthyretin related with amyloidosis and AGT linked to primary hyperoxaluria type I) and comprising five very common pathogenic mechanisms (loss-of-function and gain-of-toxic function aggregation, enzyme inactivation, protein mistargeting and accelerated degradation). Our results revealed that the magnitude of destabilizing effects and, particularly, their propagation through the structure to promote disease-associated conformational states largely determine the severity and molecular mechanisms of disease-associated missense mutations. Modulation of the structural perturbation at a mutated site is also shown to cause switches between different molecular phenotypes. When very common disease-associated missense mutations were investigated, we also found that they were not among the most deleterious possible missense mutations at those sites, and required additional contributions from codon bias and effects of CpG sites to explain their high frequency in patients. Our work sheds light on the molecular basis of pathogenic mechanisms and genotype-phenotype relationships, with implications for discriminating between pathogenic and neutral changes within human genome variability from whole genome sequencing studies.


Subject(s)
Mutation, Missense/physiology , Proteins/genetics , Structure-Activity Relationship , Animals , Computational Biology/methods , Computational Biology/statistics & numerical data , Disease , Humans , Mutation , Mutation, Missense/genetics , Pathology , Phenotype , Protein Conformation , Proteins/physiology
4.
Proc Natl Acad Sci U S A ; 114(31): E6332-E6341, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28720707

ABSTRACT

Intrinsically disordered proteins (IDPs) are ubiquitous in eukaryotes, and they are often associated with diseases in humans. The protein NUPR1 is a multifunctional IDP involved in chromatin remodeling and in the development and progression of pancreatic cancer; however, the details of such functions are unknown. Polycomb proteins are involved in specific transcriptional cascades and gene silencing. One of the proteins of the Polycomb complex is the Ring finger protein 1 (RING1). RING1 is related to aggressive tumor features in multiple cancer types. In this work we characterized the interaction between NUPR1 and the paralogue RING1B in vitro, in silico, and in cellulo. The interaction occurred through the C-terminal region of RING1B (C-RING1B), with an affinity in the low micromolar range (∼10 µM). The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch at the 30s region of its sequence, as pinpointed by computational results and site-directed mutagenesis at Ala33. The association between C-RING1B and wild-type NUPR1 also occurred in cellulo as tested by protein ligation assays; this interaction is inhibited by trifluoperazine, a drug known to hamper binding of wild-type NUPR1 with other proteins. Furthermore, the Thr68Gln and Ala33Gln/Thr68Gln mutants had a reduction in the binding toward C-RING1B as shown by in vitro, in silico, and in cellulo studies. This is an example of a well-folded partner of NUPR1, because its other interacting proteins are also unfolded. We hypothesize that NUPR1 plays an active role in chromatin remodeling and carcinogenesis, together with Polycomb proteins.

5.
Hum Mol Genet ; 26(18): 3531-3544, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28911204

ABSTRACT

Human proteins are vulnerable towards disease-associated single amino acid replacements affecting protein stability and function. Interestingly, a few studies have shown that consensus amino acids from mammals or vertebrates can enhance protein stability when incorporated into human proteins. Here, we investigate yet unexplored relationships between the high vulnerability of human proteins towards disease-associated inactivation and recent evolutionary site-specific divergence of stabilizing amino acids. Using phylogenetic, structural and experimental analyses, we show that divergence from the consensus amino acids at several sites during mammalian evolution has caused local protein destabilization in two human proteins linked to disease: cancer-associated NQO1 and alanine:glyoxylate aminotransferase, mutated in primary hyperoxaluria type I. We demonstrate that a single consensus mutation (H80R) acts as a disease suppressor on the most common cancer-associated polymorphism in NQO1 (P187S). The H80R mutation reactivates P187S by enhancing FAD binding affinity through local and dynamic stabilization of its binding site. Furthermore, we show how a second suppressor mutation (E247Q) cooperates with H80R in protecting the P187S polymorphism towards inactivation through long-range allosteric communication within the structural ensemble of the protein. Our results support that recent divergence of consensus amino acids may have occurred with neutral effects on many functional and regulatory traits of wild-type human proteins. However, divergence at certain sites may have increased the propensity of some human proteins towards inactivation due to disease-associated mutations and polymorphisms. Consensus mutations also emerge as a potential strategy to identify structural hot-spots in proteins as targets for pharmacological rescue in loss-of-function genetic diseases.


Subject(s)
Angiotensinogen/genetics , Proteins/genetics , Alanine/genetics , Alanine Transaminase/genetics , Alanine Transaminase/metabolism , Amino Acids/genetics , Angiotensinogen/metabolism , Animals , Binding Sites , Consensus Sequence/genetics , Evolution, Molecular , Humans , Mutation , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Phylogeny , Polymorphism, Genetic , Protein Binding , Protein Stability , Proteins/metabolism , Transaminases/genetics , Transaminases/metabolism
6.
Arch Biochem Biophys ; 676: 108123, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31580875

ABSTRACT

Protein-drug interaction is of prominent interest in determining the pharmacokinetic and pharmacodynamic consequences on drug delivery. Warfarin is a widely used anticoagulant drug in the treatment of venous thrombosis and pulmonary embolism and is carried in the blood almost exclusively by human serum albumin. The effects of the binding of warfarin to the native state of albumin were characterized by UV-vis absorption, conventional and synchronous fluorescence, isothermal titration calorimetry, differential scanning calorimetry and molecular dynamics simulation. The overall results indicate that, under physiological condition, the binding of warfarin in site DS1 of albumin promotes local stabilization with resulting effects on the global protein dynamics. The increase of the protein stability has both an enthalpic and entropic character. Under denaturing condition, the stabilizing effect of warfarin is evidenced by an increase of both the melting temperature and unfolding enthalpy of albumin with the drug/protein molar ratio. More importantly, thermal resistance is increased due to selective effect on the specific protein lobe that includes the main drug binding site. The comparison of the thermal behavior of the protein-warfarin complex with that in the presence of a typical ligand of the other main protein binding site, i.e. drug site DS2, provides key insight on domain-specific stabilization effects on albumin.


Subject(s)
Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Temperature , Warfarin/metabolism , Warfarin/pharmacology , Binding Sites/drug effects , Entropy , Humans , Ligands , Models, Molecular , Protein Conformation , Protein Stability/drug effects
7.
J Biol Chem ; 292(3): 786-801, 2017 01 20.
Article in English | MEDLINE | ID: mdl-27899452

ABSTRACT

Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine ß-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities.


Subject(s)
Cation Transport Proteins/chemistry , Immediate-Early Proteins/chemistry , Magnesium/chemistry , Oncogene Proteins/chemistry , Protein Tyrosine Phosphatases/chemistry , Animals , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Magnesium/metabolism , Mice , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Protein Binding , Protein Domains , Protein Structure, Secondary , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism
8.
Hum Mol Genet ; 25(11): 2234-2244, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27005423

ABSTRACT

Classic galactosemia is a potentially lethal disease caused by the dysfunction of galactose 1-phosphate uridylyltransferase (GALT). Over 300 disease-associated GALT mutations have been reported, with the majority being missense changes, although a better understanding of their underlying molecular effects has been hindered by the lack of structural information for the human enzyme. Here, we present the 1.9 Å resolution crystal structure of human GALT (hGALT) ternary complex, revealing a homodimer arrangement that contains a covalent uridylylated intermediate and glucose-1-phosphate in the active site, as well as a structural zinc-binding site, per monomer. hGALT reveals significant structural differences from bacterial GALT homologues in metal ligation and dimer interactions, and therefore is a zbetter model for understanding the molecular consequences of disease mutations. Both uridylylation and zinc binding influence the stability and aggregation tendency of hGALT. This has implications for disease-associated variants where p.Gln188Arg, the most commonly detected, increases the rate of aggregation in the absence of zinc likely due to its reduced ability to form the uridylylated intermediate. As such our structure serves as a template in the future design of pharmacological chaperone therapies and opens new concepts about the roles of metal binding and activity in protein misfolding by disease-associated mutants.


Subject(s)
Galactosemias/genetics , Structure-Activity Relationship , Ternary Complex Factors/chemistry , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Binding Sites/genetics , Catalytic Domain/genetics , Crystallography, X-Ray , Galactose/chemistry , Galactose/metabolism , Galactosemias/metabolism , Galactosemias/pathology , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Ternary Complex Factors/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/chemistry
9.
Chembiochem ; 19(10): 1088-1095, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29505688

ABSTRACT

Galactokinase catalyses the site- and stereospecific phosphorylation of α-d-galactose. As such it has attracted interest as a biocatalyst for the introduction of phosphate groups into monosaccharides. However, attempts to broaden the substrate range of human galactokinase have generally resulted in substantially reduced activity. The enzyme also has biotechnological potential in enzyme replacement therapy (ERT) for type II galactosaemia. The return-to-consensus approach can be used to identify residues that can be altered to increase protein stability and enzyme activity. This approach identified six residues of potential interest in human galactokinase. Some of the single consensus variants (M60V, D268E, A334S and G373S) increased the catalytic turnover of the enzyme, but none resulted in improved stability. When all six changes were introduced into the protein (M60V/M180V/D268E/A334S/R366Q/G373S), thermal stability was increased. Molecular dynamics simulations suggested that these changes altered the protein's conformation at key sites. The number of salt bridges and hydrogen bonds was also increased. Combining the six consensus variations with Y379W (a variant with greater substrate promiscuity) increased the stability of this variant and its turnover towards some substrates. Thus, the six consensus variants can be used to stabilise catalytically interesting variants of human galactokinase and might also be useful if the protein were to be used in ERT.


Subject(s)
Galactokinase/chemistry , Protein Engineering , Enzyme Stability , Galactokinase/genetics , Galactokinase/metabolism , Humans , Molecular Dynamics Simulation , Point Mutation , Protein Conformation , Temperature
10.
Handb Exp Pharmacol ; 245: 155-190, 2018.
Article in English | MEDLINE | ID: mdl-28993836

ABSTRACT

Mutations causing single amino acid exchanges can dramatically affect protein stability and function, leading to disease. In this chapter, we will focus on several representative cases in which such mutations affect protein stability and function leading to cancer. Mutations in BRAF and p53 have been extensively characterized as paradigms of loss-of-function/gain-of-function mechanisms found in a remarkably large fraction of tumours. Loss of RB1 is strongly associated with cancer progression, although the molecular mechanisms by which missense mutations affect protein function and stability are not well known. Polymorphisms in NQO1 represent a remarkable example of the relationships between intracellular destabilization and inactivation due to dynamic alterations in protein ensembles leading to loss of function. We will review the function of these proteins and their dysfunction in cancer and then describe in some detail the effects of the most relevant cancer-associated single amino exchanges using a translational perspective, from the viewpoints of molecular genetics and pathology, protein biochemistry and biophysics, structural, and cell biology. This will allow us to introduce several representative examples of natural and synthetic small molecules applied and developed to overcome functional, stability, and regulatory alterations due to cancer-associated amino acid exchanges, which hold the promise for using them as potential pharmacological cancer therapies.


Subject(s)
Molecular Chaperones/pharmacology , Neoplasms/drug therapy , Animals , Drug Discovery , Humans , Molecular Chaperones/therapeutic use , Mutation , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , NAD(P)H Dehydrogenase (Quinone)/chemistry , NAD(P)H Dehydrogenase (Quinone)/genetics , Protein Folding , Protein Stability , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/physiology
11.
Handb Exp Pharmacol ; 245: 345-383, 2018.
Article in English | MEDLINE | ID: mdl-29119254

ABSTRACT

Classical homocystinuria (HCU) is the most common loss-of-function inborn error of sulfur amino acid metabolism. HCU is caused by a deficiency in enzymatic degradation of homocysteine, a toxic intermediate of methionine transformation to cysteine, chiefly due to missense mutations in the cystathionine beta-synthase (CBS) gene. As with many other inherited disorders, the pathogenic mutations do not target key catalytic residues, but rather introduce structural perturbations leading to an enhanced tendency of the mutant CBS to misfold and either to form nonfunctional aggregates or to undergo proteasome-dependent degradation. Correction of CBS misfolding would represent an alternative therapeutic approach for HCU. In this review, we summarize the complex nature of CBS, its multi-domain architecture, the interplay between the three cofactors required for CBS function [heme, pyridoxal-5'-phosphate (PLP), and S-adenosylmethionine (SAM)], as well as the intricate allosteric regulatory mechanism only recently understood, thanks to advances in CBS crystallography. While roughly half of the patients respond to treatment with a PLP precursor pyridoxine, many studies suggested usefulness of small chemicals, such as chemical and pharmacological chaperones or proteasome inhibitors, rescuing mutant CBS activity in cellular and animal models of HCU. Non-specific chemical chaperones and proteasome inhibitors assist in mutant CBS folding process and/or prevent its rapid degradation, thus resulting in increased steady-state levels of the enzyme and CBS activity. Recent interest in the field and available structural information will hopefully yield CBS-specific compounds, by using high-throughput screening and computational modeling of novel ligands, improving folding, stability, and activity of CBS mutants.


Subject(s)
Cystathionine beta-Synthase/deficiency , Homocystinuria/drug therapy , Molecular Chaperones/therapeutic use , Animals , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/physiology , Enzyme Stability , High-Throughput Screening Assays , Humans , Protein Folding , Protein Processing, Post-Translational
12.
Biochim Biophys Acta ; 1864(9): 1195-1205, 2016 09.
Article in English | MEDLINE | ID: mdl-27179589

ABSTRACT

In humans, glyoxylate is an intermediary product of metabolism, whose concentration is finely balanced. Mutations in peroxisomal alanine:glyoxylate aminotransferase (hAGT1) cause primary hyperoxaluria type 1 (PH1), which results in glyoxylate accumulation that is converted to toxic oxalate. In contrast, glyoxylate is used by the nematode Caenorhabditis elegans through a glyoxylate cycle to by-pass the decarboxylation steps of the tricarboxylic acid cycle and thus contributing to energy production and gluconeogenesis from stored lipids. To investigate the differences in glyoxylate metabolism between humans and C. elegans and to determine whether the nematode might be a suitable model for PH1, we have characterized here the predicted nematode ortholog of hAGT1 (AGXT-1) and compared its molecular properties with those of the human enzyme. Both enzymes form active PLP-dependent dimers with high specificity towards alanine and glyoxylate, and display similar three-dimensional structures. Interestingly, AGXT-1 shows 5-fold higher activity towards the alanine/glyoxylate pair than hAGT1. Thermal and chemical stability of AGXT-1 is lower than that of hAGT1, suggesting temperature-adaptation of the nematode enzyme linked to the lower optimal growth temperature of C. elegans. Remarkably, in vivo experiments demonstrate the mitochondrial localization of AGXT-1 in contrast to the peroxisomal compartmentalization of hAGT1. Our results support the view that the different glyoxylate metabolism in the nematode is associated with the divergent molecular properties and subcellular localization of the alanine:glyoxylate aminotransferase activity.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/metabolism , Glyoxylates/metabolism , Mitochondria/metabolism , Peroxisomes/metabolism , Transaminases/chemistry , Adaptation, Biological , Alanine/chemistry , Alanine/metabolism , Amino Acid Sequence , Animals , Biological Evolution , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cloning, Molecular , Dimerization , Energy Metabolism , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Glyoxylates/chemistry , Humans , Mutation , Protein Structure, Secondary , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Species Specificity , Structural Homology, Protein , Temperature , Transaminases/genetics , Transaminases/metabolism
13.
Biochem Soc Trans ; 44(1): 116-22, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26862196

ABSTRACT

Galactokinase catalyses the first committed step of the Leloir pathway, i.e. the ATP-dependent phosphorylation of α-D-galactose at C1-OH. Reduced galactokinase activity results in the inherited metabolic disease type II galactosaemia. However, inhibition of galactokinase is considered a viable approach to treating more severe forms of galactosaemia (types I and III). Considerable progress has been made in the identification of high affinity, selective inhibitors. Although the structure of galactokinase from a variety of species is known, its catalytic mechanism remains uncertain. Although the bulk of evidence suggests that the reaction proceeds via an active site base mechanism, some experimental and theoretical studies contradict this. The enzyme has potential as a biocatalyst in the production of sugar 1-phosphates. This potential is limited by its high specificity. A variety of approaches have been taken to identify galactokinase variants which are more promiscuous. These have broadened galactokinase's specificity to include a wide range of D- and L-sugars. Initial studies suggest that some of these alterations result in increased flexibility at the active site. It is suggested that modulation of protein flexibility is at least as important as structural modifications in determining the success or failure of enzyme engineering.


Subject(s)
Galactokinase/metabolism , Animals , Biotechnology , Galactokinase/chemistry , Galactokinase/deficiency , Galactosemias/enzymology , Humans , Substrate Specificity
14.
Biochim Biophys Acta ; 1842(11): 2163-73, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25179580

ABSTRACT

NAD(P)H quinone oxidoreductase 1 is involved in antioxidant defence and protection from cancer, stabilizing the apoptosis regulator p53 towards degradation. Here, we studied the enzymological, biochemical and biophysical properties of two cancer-associated variants (p.R139W and p.P187S). Both variants (especially p.187S) have lower thermal stability and greater susceptibility to proteolysis compared to the wild-type. p.P187S also has reduced activity due to a lower binding affinity for the FAD cofactor as assessed by activity measurements and direct titrations. Native gel electrophoresis and dynamic light scattering also suggest that p.P187S has a higher tendency to populate unfolded states under native conditions. Detailed thermal stability studies showed that all variants irreversibly denature causing dimer dissociation, while addition of FAD restores the stability of the polymorphic forms to wild-type levels. The kinetic destabilization induced by polymorphisms as well as the kinetic protection exerted by FAD was confirmed by measuring denaturation kinetics at temperatures close to physiological. Our data suggest that the main molecular mechanisms associated with these cancer-related variants are their low binding affinity for FAD and/or kinetic instability. Thus, pharmacological chaperones may be useful in the treatment of patients bearing these polymorphisms.

15.
Biochim Biophys Acta ; 1844(12): 2355-65, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25461797

ABSTRACT

Mutational effects on protein stability and foldability are important to understand conformational diseases and protein evolution. In this work, we perform a comprehensive investigation on the energetic basis underlying mutational effects on the stability of human alanine:glyoxylate aminotransferase (AGT). We study twenty two variants whose kinetic stabilities span over eleven orders of magnitude and are classified into two groups: i) ten naturally-occurring variants, including the most common mutations causing primary hyperoxaluria type I (PH1); and ii) twelve consensus variants obtained by sequence-alignment statistics. We show that AGT dimer stability determines denaturation rates, and mutations modulate stability by changes in the effective thermodynamic stability, the aggregation propensity of partially/globally unfolded states and subtle energetic changes in the rate-limiting denaturation step. In combination with our previous expression analyses in eukaryotic cells, we propose the existence of two lower limits for AGT stability, one linked to optimal folding efficiency (close to the major allele stability) and the other setting a minimal efficiency compatible with glyoxylate detoxification in vivo (close to the minor allele stability). These lower limits could explain the high prevalence of misfolding as a disease mechanism in PH1 and support the use of pharmacological ligands aimed to increase AGT stability as therapies for this disease.

16.
Biochim Biophys Acta ; 1844(9): 1453-62, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24780582

ABSTRACT

Human cystathionine ß-synthase (hCBS) is a key enzyme of sulfur amino acid metabolism, controlling the commitment of homocysteine to the transsulfuration pathway and antioxidant defense. Mutations in hCBS cause inherited homocystinuria (HCU), a rare inborn error of metabolism characterized by accumulation of toxic homocysteine in blood and urine. hCBS is a complex multidomain and oligomeric protein whose activity and stability are independently regulated by the binding of S-adenosyl-methionine (SAM) to two different types of sites at its C-terminal regulatory domain. Here we study the role of surface electrostatics on the complex regulation and stability of hCBS using biophysical and biochemical procedures. We show that the kinetic stability of the catalytic and regulatory domains is significantly affected by the modulation of surface electrostatics through noticeable structural and energetic changes along their denaturation pathways. We also show that surface electrostatics strongly affect SAM binding properties to those sites responsible for either enzyme activation or kinetic stabilization. Our results provide new insight into the regulation of hCBS activity and stability in vivo with implications for understanding HCU as a conformational disease. We also lend experimental support to the role of electrostatic interactions in the recently proposed binding modes of SAM leading to hCBS activation and kinetic stabilization.


Subject(s)
Adenosine/analogs & derivatives , Cystathionine beta-Synthase/chemistry , Ethionine/analogs & derivatives , Protein Subunits/chemistry , Adenosine/chemistry , Adenosine/metabolism , Catalytic Domain , Cystathionine beta-Synthase/metabolism , Enzyme Activation , Ethionine/chemistry , Ethionine/metabolism , Humans , Kinetics , Ligands , Protein Binding , Protein Multimerization , Protein Stability , Protein Structure, Secondary , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sodium Chloride/chemistry , Static Electricity , Surface Properties , Thermodynamics , Urea/chemistry
17.
Biochem J ; 462(3): 453-63, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24957194

ABSTRACT

Protein stability is a fundamental issue in biomedical and biotechnological applications of proteins. Among these applications, gene- and enzyme-replacement strategies are promising approaches to treat inherited diseases that may benefit from protein engineering techniques, even though these beneficial effects have been largely unexplored. In the present study we apply a sequence-alignment statistics procedure (consensus-based approach) to improve the activity and stability of the human AGT (alanine-glyoxylate aminotransferase) protein, an enzyme which causes PH1 (primary hyperoxaluria type I) upon mutation. By combining only five consensus mutations, we obtain a variant (AGT-RHEAM) with largely enhanced in vitro thermal and kinetic stability, increased activity, and with no side effects on foldability and peroxisomal targeting in mammalian cells. The structure of AGT-RHEAM reveals changes at the dimer interface and improved electrostatic interactions responsible for increased kinetic stability. Consensus-based variants maintained the overall protein fold, crystallized more easily and improved the expression as soluble proteins in two different systems [AGT and CIPK24 (CBL-interacting serine/threonine-protein kinase) SOS2 (salt-overly-sensitive 2)]. Thus the consensus-based approach also emerges as a simple and generic strategy to increase the crystallization success for hard-to-get protein targets as well as to enhance protein stability and function for biomedical applications.


Subject(s)
Enzyme Replacement Therapy/methods , Transaminases/therapeutic use , Animals , CHO Cells , Cricetulus , Crystallization , Crystallography, X-Ray , Enzyme Stability , Humans , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/therapy , Sequence Alignment , Solubility , Transaminases/genetics
18.
Biochim Biophys Acta ; 1834(12): 2502-11, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23911916

ABSTRACT

Conformational diseases often show defective protein folding efficiency in vivo upon mutation, affecting protein properties such as thermodynamic stability and folding/unfolding/misfolding kinetics as well as the interactions of the protein with the protein homeostasis network. Human phosphoglycerate kinase 1 (hPGK1) deficiency is a rare inherited disease caused by mutations in hPGK1 that lead to loss-of-function. This disease offers an excellent opportunity to explore the complex relationships between protein stability and dynamics because of the different unfolding mechanisms displayed towards chemical and thermal denaturation. This work explores these relationships using two thermostable mutants (p.E252A and p.T378P) causing hPGK1 deficiency and WT hPGK1 using proteolysis and chemical denaturation. p.T378P is degraded ~30-fold faster at low protease concentrations (here, the proteolysis step is rate-limiting) and ~3-fold faster at high protease concentrations (where unfolding kinetics is rate-limiting) than WT and p.E252A, indicating that p.T378P is thermodynamically and kinetically destabilized. Urea denaturation studies support the decrease in thermodynamic stability and folding cooperativity for p.T378P, as well as changes in folding/unfolding kinetics. The present study reveals changes in the folding landscape of hPGK1 upon mutation that may affect protein folding efficiency and stability in vivo, also suggesting that native state stabilizers and protein homeostasis modulators may help to correct folding defects in hPGK1 deficiency. Moreover, detailed kinetic proteolysis studies are shown to be powerful and simple tools to provide deep insight into mutational effects on protein folding and stability in conformational diseases.


Subject(s)
Genetic Diseases, X-Linked/enzymology , Metabolism, Inborn Errors/enzymology , Mutation, Missense , Phosphoglycerate Kinase/deficiency , Protein Denaturation , Proteolysis , Amino Acid Substitution , Enzyme Stability , Genetic Diseases, X-Linked/genetics , Humans , Metabolism, Inborn Errors/genetics , Phosphoglycerate Kinase/chemistry , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism , Urea/chemistry
19.
Arch Biochem Biophys ; 562: 103-14, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25150110

ABSTRACT

Type III galactosemia is an inherited disease caused by mutations which affect the activity of UDP-galactose 4'-epimerase (GALE). We evaluated the impact of four disease-associated variants (p.N34S, p.G90E, p.V94M and p.K161N) on the conformational stability and dynamics of GALE. Thermal denaturation studies showed that wild-type GALE denatures at temperatures close to physiological, and disease-associated mutations often reduce GALE's thermal stability. This denaturation is under kinetic control and results partly from dimer dissociation. The natural ligands, NAD(+) and UDP-glucose, stabilize GALE. Proteolysis studies showed that the natural ligands and disease-associated variations affect local dynamics in the N-terminal region of GALE. Proteolysis kinetics followed a two-step irreversible model in which the intact protein is cleaved at Ala38 forming a long-lived intermediate in the first step. NAD(+) reduces the rate of the first step, increasing the amount of undigested protein whereas UDP-glucose reduces the rate of the second step, increasing accumulation of the intermediate. Disease-associated variants affect these rates and the amounts of protein in each state. Our results also suggest communication between domains in GALE. We hypothesize that, in vivo, concentrations of natural ligands modulate GALE stability and that it should be possible to discover compounds which mimic the stabilising effects of the natural ligands overcoming mutation-induced destabilization.


Subject(s)
Galactosemias/enzymology , Galactosemias/genetics , UDPglucose 4-Epimerase/chemistry , Bacillus/metabolism , Calorimetry , Crystallography, X-Ray , DNA Mutational Analysis , Escherichia coli/metabolism , Galactose/chemistry , Genetic Variation , Humans , Ligands , Mutation , Protein Binding , Protein Structure, Tertiary , Proteolysis , Spectrophotometry , Substrate Specificity , Temperature , Thermolysin/chemistry , Uridine Diphosphate Glucose/chemistry
20.
J Inherit Metab Dis ; 37(6): 909-16, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24838780

ABSTRACT

Mutations in genes encoding metabolic enzymes are often the cause of inherited diseases. Mutations usually affect the ability of proteins to fold properly, thus leading to enzyme loss of function. In this work, we explored the relationships between protein stability, aggregation, and degradation in vitro and inside cells in a large set of mutants associated with human phosphoglycerate kinase 1 (hPGK1) deficiency. To this end, we studied a third of the pathogenic alleles reported in the literature using expression analyses and biochemical, biophysical, and computational procedures. Our results show that most pathogenic variants studied had an increased tendency to aggregate when expressed in Escherichia coli, well correlating with the denaturation half-lives measured by thermal denaturation in vitro. Further, the most deleterious mutants show reduced stability toward chemical denaturation and proteolysis, supporting a pivotal role of thermodynamic stability in the propensity toward aggregation and proteolysis of pathogenic hPGK1 mutants in vitro and inside cells. Our strategy allowed us to unravel the complex relationships between protein stability, aggregation, and degradation in hPGK1 deficiency, which might be used to understand disease mechanisms in many inborn errors of metabolism. Our results suggest that pharmacological chaperones and protein homeostasis modulators could be considered as good candidates for therapeutic approaches for hPGK1 deficiency.


Subject(s)
Genetic Diseases, X-Linked/genetics , Metabolism, Inborn Errors/genetics , Phosphoglycerate Kinase/deficiency , Alleles , Enzyme Stability , Escherichia coli , Homeostasis , Humans , Mutation , Phosphoglycerate Kinase/genetics , Protein Conformation , Protein Denaturation , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL