Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Gut ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670629

ABSTRACT

OBJECTIVE: The dysregulation of the axon guidance pathway is common in pancreatic ductal adenocarcinoma (PDAC), yet our understanding of its biological relevance is limited. Here, we investigated the functional role of the axon guidance cue SEMA3A in supporting PDAC progression. DESIGN: We integrated bulk and single-cell transcriptomic datasets of human PDAC with in situ hybridisation analyses of patients' tissues to evaluate SEMA3A expression in molecular subtypes of PDAC. Gain and loss of function experiments in PDAC cell lines and organoids were performed to dissect how SEMA3A contributes to define a biologically aggressive phenotype. RESULTS: In PDAC tissues, SEMA3A is expressed by stromal elements and selectively enriched in basal-like/squamous epithelial cells. Accordingly, expression of SEMA3A in PDAC cells is induced by both cell-intrinsic and cell-extrinsic determinants of the basal-like phenotype. In vitro, SEMA3A promotes cell migration as well as anoikis resistance. At the molecular level, these phenotypes are associated with increased focal adhesion kinase signalling through canonical SEMA3A-NRP1 axis. SEMA3A provides mouse PDAC cells with greater metastatic competence and favours intratumoural infiltration of tumour-associated macrophages and reduced density of T cells. Mechanistically, SEMA3A functions as chemoattractant for macrophages and skews their polarisation towards an M2-like phenotype. In SEMA3Ahigh tumours, depletion of macrophages results in greater intratumour infiltration by CD8+T cells and better control of the disease from antitumour treatment. CONCLUSIONS: Here, we show that SEMA3A is a stress-sensitive locus that promotes the malignant phenotype of basal-like PDAC through both cell-intrinsic and cell-extrinsic mechanisms.

2.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891895

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons (MNs) in the brain and spinal cord, leading to progressive paralysis and death. Increasing evidence indicates that neuroinflammation plays an important role in ALS's pathogenesis and disease progression. Neuroinflammatory responses, primarily driven by activated microglia and astrocytes, and followed by infiltrating peripheral immune cells, contribute to exacerbate/accelerate MN death. In particular, the role of the microglia in ALS remains unclear, partly due to the lack of experimental models that can fully recapitulate the complexity of ALS's pathology. In this study, we developed and characterized a microglial cell line, SIM-A9-expressing human mutant protein Cu+/Zn+ superoxide dismutase_1 (SIM-A9hSOD1(G93A)), as a suitable model in vitro mimicking the microglia activity in ALS. The expression of hSOD1(G93A) in SIM-A9 cells induced a change in their metabolic activity, causing polarization into a pro-inflammatory phenotype and enhancing reactive oxygen species production, which is known to activate cell death processes and apoptosis. Afterward, we used our microglial model as an experimental set-up to investigate the therapeutic action of extracellular vesicles isolated from adipose mesenchymal stem cells (ASC-EVs). ASC-EVs represent a promising therapeutic treatment for ALS due to their neuroprotective and immunomodulatory properties. Here, we demonstrated that treatment with ASC-EVs is able to modulate activated ALS microglia, reducing their metabolic activity and polarizing their phenotype toward an anti-inflammatory one through a mechanism of reduction of reactive oxygen species.


Subject(s)
Amyotrophic Lateral Sclerosis , Extracellular Vesicles , Mesenchymal Stem Cells , Microglia , Superoxide Dismutase-1 , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Extracellular Vesicles/metabolism , Microglia/metabolism , Mesenchymal Stem Cells/metabolism , Humans , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Reactive Oxygen Species/metabolism , Cell Line , Adipose Tissue/cytology , Adipose Tissue/metabolism
3.
Mod Pathol ; 36(9): 100251, 2023 09.
Article in English | MEDLINE | ID: mdl-37355152

ABSTRACT

Signet-ring cell (SRC)/poorly cohesive cell carcinoma is an aggressive variant of pancreatic ductal adenocarcinoma (PDAC). This study aimed to clarify its clinicopathologic and molecular profiles based on a multi-institutional cohort of 20 cases. The molecular profiles were investigated using DNA and RNA sequencing. The clinicopathologic parameters and molecular alterations were analyzed based on survival indices and using a validation/comparative cohort of 480 conventional PDAC patients. The primary findings were as follows: (1) clinicopathologic features: SRC carcinomas are highly aggressive neoplasms with poor prognosis, and the lungs are elective metastatic sites; (2) survival analysis: a higher SRC component was indicative of poorer prognosis. In particular, the most clinically significant threshold of SRC was 80%, showing statistically significant differences in both disease-specific and disease-free survival; (3) genomic profiles: SRC carcinomas are similar to conventional PDAC with the most common alterations affecting the classic PDAC drivers KRAS (70% of cases), TP53 (55%), SMAD4 (25%), and CDKN2A (20%). EGFR alterations, RET::CCDC6 fusion gene, and microsatellite instability (3 different cases, 1 alteration per case) represent novel targets for precision oncology. The occurrence of SMAD4 mutations was associated with poorer prognosis; (4) pancreatic SRC carcinomas are genetically different from gastric SRC carcinomas: CDH1, the classic driver gene of gastric SRC carcinoma, is not altered in pancreatic SRC carcinoma; (5) transcriptome analysis: the cases clustered into 2 groups, one classical/exocrine-like, and the other squamous-like; and (6) SRC carcinoma-derived organoids can be successfully generated, and their cultures preserve the histologic and molecular features of parental SRC carcinoma. Although pancreatic SRC carcinoma shares similarities with conventional PDAC regarding the most important genetic drivers, it also exhibits important differences. A personalized approach for patients with this tumor type should consider the clinical relevance of histologic determination of the SRC component and the presence of potentially actionable molecular targets.


Subject(s)
Carcinoma, Pancreatic Ductal , Carcinoma, Signet Ring Cell , Pancreatic Neoplasms , Humans , Precision Medicine , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Carcinoma, Signet Ring Cell/genetics , Carcinoma, Signet Ring Cell/pathology , Genomics , Prognosis , Pancreatic Neoplasms
4.
Acta Neuropathol ; 146(5): 707-724, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37715818

ABSTRACT

In multiple sclerosis (MS), sustained inflammatory activity can be visualized by iron-sensitive magnetic resonance imaging (MRI) at the edges of chronic lesions. These paramagnetic rim lesions (PRLs) are associated with clinical worsening, although the cell type-specific and molecular pathways of iron uptake and metabolism are not well known. We studied two postmortem cohorts: an exploratory formalin-fixed paraffin-embedded (FFPE) tissue cohort of 18 controls and 24 MS cases and a confirmatory snap-frozen cohort of 6 controls and 14 MS cases. Besides myelin and non-heme iron imaging, the haptoglobin-hemoglobin scavenger receptor CD163, the iron-metabolizing markers HMOX1 and HAMP as well as immune-related markers P2RY12, CD68, C1QA and IL10 were visualized in myeloid cell (MC) subtypes at RNA and protein levels across different MS lesion areas. In addition, we studied PRLs in vivo in a cohort of 98 people with MS (pwMS) via iron-sensitive 3 T MRI and haptoglobin genotyping by PCR. CSF samples were available from 38 pwMS for soluble CD163 (sCD163) protein level measurements by ELISA. In postmortem tissues, we observed that iron uptake was linked to rim-associated C1QA-expressing MC subtypes, characterized by upregulation of CD163, HMOX1, HAMP and, conversely, downregulation of P2RY12. We found that pwMS with [Formula: see text] 4 PRLs had higher sCD163 levels in the CSF than pwMS with [Formula: see text] 3 PRLs with sCD163 correlating with the number of PRLs. The number of PRLs was associated with clinical worsening but not with age, sex or haptoglobin genotype of pwMS. However, pwMS with Hp2-1/Hp2-2 haplotypes had higher clinical disability scores than pwMS with Hp1-1. In summary, we observed upregulation of the CD163-HMOX1-HAMP axis in MC subtypes at chronic active lesion rims, suggesting haptoglobin-bound hemoglobin but not transferrin-bound iron as a critical source for MC-associated iron uptake in MS. The correlation of CSF-associated sCD163 with PRL counts in MS highlights the relevance of CD163-mediated iron uptake via haptoglobin-bound hemoglobin. Also, while Hp haplotypes had no noticeable influence on PRL counts, pwMS carriers of a Hp2 allele might have a higher risk to experience clinical worsening.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Iron/metabolism , Haptoglobins/genetics , Haptoglobins/metabolism , Biomarkers , Hemoglobins/metabolism , Myeloid Cells/pathology , Magnetic Resonance Imaging
5.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835179

ABSTRACT

Intrathecal inflammation plays a key role in the pathogenesis of multiple sclerosis (MS). To better elucidate its relationship with peripheral inflammation, we investigated the correlation between cerebrospinal fluid (CSF) and serum levels of 61 inflammatory proteins. Paired CSF and serum samples were collected from 143 treatment-naïve MS patients at diagnosis. A customized panel of 61 inflammatory molecules was analyzed by a multiplex immunoassay. Correlations between serum and CSF expression levels for each molecule were performed by Spearman's method. The expression of sixteen CSF proteins correlated with their serum expression (p-value < 0.001): only five molecules (CXCL9, sTNFR2, IFNα2, Pentraxin-3, and TSLP) showed a Rho value >0.40, suggesting moderate CSF/serum correlation. No correlation between inflammatory serum patterns and Qalb was observed. Correlation analysis of serum expression levels of these sixteen proteins with clinical and MRI parameters pinpointed a subset of five molecules (CXCL9, sTNFR2, IFNα2, IFNß, and TSLP) negatively correlating with spinal cord lesion volume. However, following FDR correction, only the correlation of CXCL9 remained significant. Our data support the hypothesis that the intrathecal inflammation in MS only partially associates with the peripheral one, except for the expression of some immunomodulators that might have a key role in the initial MS immune response.


Subject(s)
Inflammation , Multiple Sclerosis , Humans , Biomarkers , Inflammation/blood , Inflammation/cerebrospinal fluid , Inflammation/metabolism , Multiple Sclerosis/diagnosis , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Oligoclonal Bands/cerebrospinal fluid
6.
Mult Scler ; 28(5): 768-777, 2022 04.
Article in English | MEDLINE | ID: mdl-34328817

ABSTRACT

BACKGROUND: The cerebrospinal fluid (CSF) molecular milieu is a marker of diffuse intrathecal inflammation in the meninges that, in turn, targets the grey matter (GM) in multiple sclerosis (MS). Cognitive impairment (CI) is associated with brain damage in MS and is often present early in people with MS (pwMS). OBJECTIVE: To investigate whether a specific CSF inflammatory profile is associated with different degrees of CI in newly diagnosed pwMS. METHODS: Sixty-nine pwMS and 43 healthy controls (HCs) underwent neuropsychological testing. The presence and levels of 57 inflammatory mediators in the CSF were assessed. RESULTS: Apparently cognitively normal (ACN) pwMS had impaired executive functioning compared to HCs but performed better than pwMS with mild and severe CI (mCI and sCI) in all tests. CSF mediators involving innate immunity and immune activation and recruitment, differentiate ACN from pwMS with mCI, while CSF mediators related to B- and T-cell immunity and chemotaxis differentiate both ACN and mCI from those with sCI. CXCL13 was the only molecule that differentiated sCI from mCI pwMS. CONCLUSION: Specific CSF molecular patterns, reflecting the involvement of both innate and adaptive immune responses, are associated with the severity of CI in newly diagnosed pwMS.


Subject(s)
Cognitive Dysfunction , Multiple Sclerosis , Biomarkers/cerebrospinal fluid , Cerebral Cortex , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Gray Matter , Humans , Multiple Sclerosis/diagnosis , Neuropsychological Tests
7.
Cell Mol Neurobiol ; 37(4): 665-682, 2017 May.
Article in English | MEDLINE | ID: mdl-27422411

ABSTRACT

Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.


Subject(s)
Cell Differentiation/drug effects , Neuroblastoma/metabolism , Neurons/metabolism , Cell Differentiation/physiology , Cell Line, Tumor , Gene Expression Profiling/methods , Humans , Membrane Proteins/metabolism , Neuroblastoma/drug therapy , Neurons/cytology , Neurons/drug effects , Tretinoin/pharmacology
8.
Dev Med Child Neurol ; 59(8): 815-821, 2017 08.
Article in English | MEDLINE | ID: mdl-28542837

ABSTRACT

AIM: To characterize the phenotypic profile of a cohort of children affected with CLN5, a rare form of neuronal ceroid-lipofuscinosis (NCL), and to trace the features of the natural history of the disease. METHOD: Records of 15 children (nine males, six females) were obtained from the data sets of the DEM-CHILD International NCL Registry. Disease progression was measured by rating six functional domains at different time points along the disease course. All patients underwent mutation analysis of the CLN5 gene and ultrastructural investigations of peripheral tissues. Expression of the gene product, pCLN5, was characterized in vitro in six patients. RESULTS: Disease onset was at 2 to 7 years 6 months of age: impaired learning and cognition were the most common early symptoms. Seizures occurred relatively late (median age 8y) and were the presenting symptoms in two children. Nine mutations were detected in 30 alleles, including six mutations predicting a truncated protein. Mixed cytosomes were observed by electron microscopy. Differences of disease progression were observed in two groups of patients and could be related to their genetic profile. INTERPRETATION: Clinical features in a multicentre cohort of patients with CLN5 confirm that cognitive difficulties are early clinical markers of this condition. Severe mutations were associated with a more rapid decline of neurological function.


Subject(s)
Cognitive Dysfunction/physiopathology , Disease Progression , Learning Disabilities/physiopathology , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses , Registries , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Cognitive Dysfunction/etiology , Cohort Studies , DNA Mutational Analysis , Female , Genotype , Humans , Learning Disabilities/etiology , Lysosomal Membrane Proteins , Male , Mobility Limitation , Neuronal Ceroid-Lipofuscinoses/complications , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Neuronal Ceroid-Lipofuscinoses/physiopathology , Phenotype , Young Adult
9.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166756, 2023 08.
Article in English | MEDLINE | ID: mdl-37209872

ABSTRACT

• Neuronal Ceroido Lipofuscinoses (NCL) are inherited, neurodegenerative disorders associated with lysosomal storage. • Impaired autophagy plays a pathogenetic role in several NCL forms, including CLN3 disease, but study on human brains are lacking. • In post-mortem brain samples of a CLN3 patient the LC3-I to LC3-II shift was consistent with activated autophagy. However, the autophagic process seemed to be ineffective due to the presence of lysosomal storage markers. • After fractionation with buffers of increasing detergent-denaturing strength, a peculiar solubility pattern of LC3-II was observed in CLN3 patient's samples, suggesting a different lipid composition of the membranes where LC3-II is stacked.


Subject(s)
Lysosomal Storage Diseases , Neuronal Ceroid-Lipofuscinoses , Humans , Detergents/pharmacology , Membrane Glycoproteins/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Molecular Chaperones/metabolism , Lysosomal Storage Diseases/pathology , Brain/metabolism
10.
Front Endocrinol (Lausanne) ; 14: 999792, 2023.
Article in English | MEDLINE | ID: mdl-37082125

ABSTRACT

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and highly heterogeneous neoplasms whose incidence has markedly increased over the last decades. A grading system based on the tumor cells' proliferation index predicts high-risk for G3 NETs. However, low-to-intermediate grade (G1/G2) NETs have an unpredictable clinical course that varies from indolent to highly malignant. Cultures of human cancer cells enable to perform functional perturbation analyses that are instrumental to enhance our understanding of cancer biology. To date, no tractable and reliable long-term culture of G1/G2 NET has been reported to permit disease modeling and pharmacological screens. Here, we report of the first long-term culture of a G2 metastatic small intestinal NET that preserves the main genetic drivers of the tumor and retains expression patterns of the endocrine cell lineage. Replicating the tissue, this long-term culture showed a low proliferation index, and yet it could be propagated continuously without dramatic changes in the karyotype. The model was readily available for pharmacological screens using targeted agents and as expected, showed low tumorigenic capacity in vivo. Overall, this is the first long-term culture of NETs to faithfully recapitulate many aspects of the original neuroendocrine tumor.


Subject(s)
Neuroendocrine Tumors , Humans , Neuroendocrine Tumors/pathology , Prognosis , Neoplasm Grading , Ki-67 Antigen/metabolism , Receptor Protein-Tyrosine Kinases
11.
Biomolecules ; 12(8)2022 07 24.
Article in English | MEDLINE | ID: mdl-35892334

ABSTRACT

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an inherited neurodegenerative disease characterized by early-onset spasticity in the lower limbs, axonal-demyelinating sensorimotor peripheral neuropathy, and cerebellar ataxia. Our understanding of ARSACS (genetic basis, protein function, and disease mechanisms) remains partial. The integrative use of organelle-based quantitative proteomics and whole-genome analysis proposed in the present study allowed identifying the affected disease-specific pathways, upstream regulators, and biological functions related to ARSACS, which exemplify a rationale for the development of improved early diagnostic strategies and alternative treatment options in this rare condition that currently lacks a cure. Our integrated results strengthen the evidence for disease-specific defects related to bioenergetics and protein quality control systems and reinforce the role of dysregulated cytoskeletal organization in the pathogenesis of ARSACS.


Subject(s)
Proteomics , Spinocerebellar Ataxias , Heat-Shock Proteins/genetics , Humans , Muscle Spasticity , Mutation , Organelles , Spinocerebellar Ataxias/congenital
12.
Cells ; 11(11)2022 06 04.
Article in English | MEDLINE | ID: mdl-35681535

ABSTRACT

CLN5 disease (MIM: 256731) represents a rare late-infantile form of neuronal ceroid lipofuscinosis (NCL), caused by mutations in the CLN5 gene that encodes the CLN5 protein (CLN5p), whose physiological roles stay unanswered. No cure is currently available for CLN5 patients and the opportunities for therapies are lagging. The role of lysosomes in the neuro-pathophysiology of CLN5 disease represents an important topic since lysosomal proteins are directly involved in the primary mechanisms of neuronal injury occurring in various NCL forms. We developed and implemented a lysosome-focused, label-free quantitative proteomics approach, followed by functional validations in both CLN5-knockout neuronal-like cell lines and Cln5-/- mice, to unravel affected pathways and modifying factors involved in this disease scenario. Our results revealed a key role of CLN5p in lipid homeostasis and sphingolipid metabolism and highlighted mutual NCL biomarkers scored with high lysosomal confidence. A newly generated cln5 knockdown zebrafish model recapitulated most of the pathological features seen in NCL disease. To translate the findings from in-vitro and preclinical models to patients, we evaluated whether two FDA-approved drugs promoting autophagy via TFEB activation or inhibition of the glucosylceramide synthase could modulate in-vitro ROS and lipid overproduction, as well as alter the locomotor phenotype in zebrafish. In summary, our data advance the general understanding of disease mechanisms and modifying factors in CLN5 disease, which are recurring in other NCL forms, also stimulating new pharmacological treatments.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Animals , Homeostasis , Humans , Lipids , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Mice , Neuronal Ceroid-Lipofuscinoses/metabolism , Proteomics , Sphingolipids/metabolism , Zebrafish/metabolism
13.
Biomedicines ; 10(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36551795

ABSTRACT

The impact of disease-modifying therapies (DMTs) on the immune response to coronavirus disease-2019 (COVID-19) vaccines in persons with multiple sclerosis (pwMS) needs further elucidation. We investigated BNT162b2 mRNA COVID-19 vaccine effects concerning antibody seroconversion, inflammatory mediators' level and immunophenotype assessment in pwMS treated with cladribine (c-pwMS, n = 29), fingolimod (f-pwMS, n = 15) and ocrelizumab (o-pwMS, n = 54). Anti-spike immunoglobulin (Ig)-G detection was performed by an enzyme immunoassay; molecular mediators (GrB, IFN-γ and TNF-α) were quantified using the ELLA platform, and immunophenotype was assessed by flow cytometry. ANCOVA, Student's t-test and Pearson correlation analyses were applied. Only one o-pwMS showed a mild COVID-19 infection despite most o-pwMS lacking seroconversion and showing lower anti-spike IgG titers than c-pwMS and f-pwMS. No significant difference in cytokine production and lymphocyte count was observed in c-pwMS and f-pwMS. In contrast, in o-pwMS, a significant increase in GrB levels was detected after vaccination. Considering non-seroconverted o-pwMS, a significant increase in GrB serum levels and CD4+ T lymphocyte count was found after vaccination, and a negative correlation was observed between anti-spike IgG production and CD4+ T cells count. Differences in inflammatory mediators' production after BNT162b2 vaccination in o-pwMS, specifically in those lacking anti-spike IgG, suggest a protective cellular immune response.

14.
Oncogene ; 41(38): 4371-4384, 2022 09.
Article in English | MEDLINE | ID: mdl-35963908

ABSTRACT

Transcriptomic analyses of pancreatic ductal adenocarcinoma (PDAC) have identified two major epithelial subtypes with distinct biology and clinical behaviours. Here, we aimed to clarify the role of FGFR1 and FGFR4 in the definition of aggressive PDAC phenotypes. We found that the expression of FGFR4 is exclusively detected in epithelial cells, significantly elevated in the classical PDAC subtype, and associates with better outcomes. In highly aggressive basal-like/squamous PDAC, reduced FGFR4 expression aligns with hypermethylation of the gene and lower levels of histone marks associated with active transcription in its regulatory regions. Conversely, FGFR1 has more promiscuous expression in both normal and malignant pancreatic tissues and is strongly associated with the EMT phenotype but not with the basal-like cell lineage. Regardless of the genetic background, the increased proliferation of FGFR4-depleted PDAC cells correlates with hyperactivation of the mTORC1 pathway both in vitro and in vivo. Downregulation of FGFR4 in classical cell lines invariably leads to the enrichment of basal-like/squamous gene programs and is associated with either partial or full switch of phenotype. In sum, we show that endogenous levels of FGFR4 limit the malignant phenotype of PDAC cells. Finally, we propose FGFR4 as a valuable marker for the stratification of PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Carcinoma, Squamous Cell , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/pathology , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Pancreatic Neoplasms/pathology , Phenotype , Receptor, Fibroblast Growth Factor, Type 4/genetics , Pancreatic Neoplasms
15.
Biochem Biophys Res Commun ; 416(1-2): 159-64, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22100646

ABSTRACT

Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.


Subject(s)
Mitochondria/ultrastructure , Neuronal Ceroid-Lipofuscinoses/pathology , Amines/chemistry , Biomarkers/metabolism , Caspase 3/metabolism , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/ultrastructure , Humans , Lysosomal-Associated Membrane Protein 2 , Lysosomal Membrane Proteins/metabolism , Lysosomes/ultrastructure , Membrane Proteins/metabolism , Staurosporine/pharmacology , Thiolester Hydrolases
16.
Cells ; 10(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-34359880

ABSTRACT

An imbalance of TNF signalling in the inflammatory milieu generated by meningeal immune cell infiltrates in the subarachnoid space in multiple sclerosis (MS), and its animal model may lead to increased cortical pathology. In order to explore whether this feature may be present from the early stages of MS and may be associated with the clinical outcome, the protein levels of TNF, sTNF-R1 and sTNF-R2 were assayed in CSF collected from 122 treatment-naïve MS patients and 36 subjects with other neurological conditions at diagnosis. Potential correlations with other CSF cytokines/chemokines and with clinical and imaging parameters at diagnosis (T0) and after 2 years of follow-up (T24) were evaluated. Significantly increased levels of TNF (fold change: 7.739; p < 0.001), sTNF-R1 (fold change: 1.693; p < 0.001) and sTNF-R2 (fold change: 2.189; p < 0.001) were detected in CSF of MS patients compared to the control group at T0. Increased TNF levels in CSF were significantly (p < 0.01) associated with increased EDSS change (r = 0.43), relapses (r = 0.48) and the appearance of white matter lesions (r = 0.49). CSF levels of TNFR1 were associated with cortical lesion volume (r = 0.41) at T0, as well as with new cortical lesions (r = 0.56), whilst no correlation could be found between TNFR2 levels in CSF and clinical or MRI features. Combined correlation and pathway analysis (ingenuity) of the CSF protein pattern associated with TNF expression (encompassing elevated levels of BAFF, IFN-γ, IL-1ß, IL-10, IL-8, IL-16, CCL21, haptoglobin and fibrinogen) showed a particular relationship to the interaction between innate and adaptive immune response. The CSF sTNF-R1-associated pattern (encompassing high levels of CXCL13, TWEAK, LIGHT, IL-35, osteopontin, pentraxin-3, sCD163 and chitinase-3-L1) was mainly related to altered T cell and B cell signalling. Finally, the CSF TNFR2-associated pattern (encompassing high CSF levels of IFN-ß, IFN-λ2, sIL-6Rα) was linked to Th cell differentiation and regulatory cytokine signalling. In conclusion, dysregulation of TNF and TNF-R1/2 pathways associates with specific clinical/MRI profiles and can be identified at a very early stage in MS patients, at the time of diagnosis, contributing to the prediction of the disease outcome.


Subject(s)
Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/genetics , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor-alpha/genetics , Adaptive Immunity , Adult , Antigens, CD/cerebrospinal fluid , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/cerebrospinal fluid , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , C-Reactive Protein/cerebrospinal fluid , C-Reactive Protein/genetics , C-Reactive Protein/immunology , Case-Control Studies , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/immunology , Cerebral Cortex/pathology , Chemokine CXCL13/cerebrospinal fluid , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Chitinase-3-Like Protein 1/cerebrospinal fluid , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/immunology , Cytokine TWEAK/cerebrospinal fluid , Cytokine TWEAK/genetics , Cytokine TWEAK/immunology , Early Diagnosis , Female , Gene Expression Regulation , Humans , Immunity, Innate , Interleukins/cerebrospinal fluid , Interleukins/genetics , Interleukins/immunology , Magnetic Resonance Imaging , Male , Meninges/diagnostic imaging , Meninges/immunology , Meninges/pathology , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/pathology , Osteopontin/cerebrospinal fluid , Osteopontin/genetics , Osteopontin/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Tumor Necrosis Factor, Type I/cerebrospinal fluid , Receptors, Tumor Necrosis Factor, Type I/immunology , Receptors, Tumor Necrosis Factor, Type II/cerebrospinal fluid , Receptors, Tumor Necrosis Factor, Type II/immunology
17.
Front Cell Neurosci ; 14: 569598, 2020.
Article in English | MEDLINE | ID: mdl-33390903

ABSTRACT

CLN1 disease (OMIM #256730) is an inherited neurological disorder of early childhood with epileptic seizures and premature death. It is associated with mutations in CLN1 coding for Palmitoyl-Protein Thioesterase 1 (PPT1), a lysosomal enzyme which affects the recycling and degradation of lipid-modified (S-acylated) proteins by removing palmitate residues. Transcriptomic evidence from a neuronal-like cellular model derived from differentiated SH-SY5Y cells disclosed the potential negative roles of CLN1 overexpression, affecting the elongation of neuronal processes and the expression of selected proteins of the synaptic region. Bioinformatic inquiries of transcriptomic data pinpointed a dysregulated expression of several genes coding for proteins related to voltage-gated ion channels, including subunits of calcium and potassium channels (VGCC and VGKC). In SH-SY5Y cells overexpressing CLN1 (SH-CLN1 cells), the resting potential and the membrane conductance in the range of voltages close to the resting potential were not affected. However, patch-clamp recordings indicated a reduction of Ba2+ currents through VGCC of SH-CLN1 cells; Ca2+ imaging revealed reduced Ca2+ influx in the same cellular setting. The results of the biochemical and morphological investigations of CACNA2D2/α2δ-2, an accessory subunit of VGCC, were in accordance with the downregulation of the corresponding gene and consistent with the hypothesis that a lower number of functional channels may reach the plasma membrane. The combined use of 4-AP and NS-1643, two drugs with opposing effects on Kv11 and Kv12 subfamilies of VGKC coded by the KCNH gene family, provides evidence for reduced functional Kv12 channels in SH-CLN1 cells, consistent with transcriptomic data indicating the downregulation of KCNH4. The lack of compelling evidence supporting the palmitoylation of many ion channels subunits investigated in this study stimulates inquiries about the role of PPT1 in the trafficking of channels to the plasma membrane. Altogether, these results indicate a reduction of functional voltage-gated ion channels in response to CLN1/PPT1 overexpression in differentiated SH-SY5Y cells and provide new insights into the altered neuronal excitability which may underlie the severe epileptic phenotype of CLN1 disease. It remains to be shown if remodeling of such functional channels on plasma membrane can occur as a downstream effect of CLN1 disease.

18.
Cell Death Discov ; 6: 18, 2020.
Article in English | MEDLINE | ID: mdl-32257390

ABSTRACT

CLN5 disease is a rare form of late-infantile neuronal ceroid lipofuscinosis (NCL) caused by mutations in the CLN5 gene that encodes a protein whose primary function and physiological roles remains unresolved. Emerging lines of evidence point to mitochondrial dysfunction in the onset and progression of several forms of NCL, offering new insights into putative biomarkers and shared biological processes. In this work, we employed cellular and murine models of the disease, in an effort to clarify disease pathways associated with CLN5 depletion. A mitochondria-focused quantitative proteomics approach followed by functional validations using cell biology and immunofluorescence assays revealed an impairment of mitochondrial functions in different CLN5 KO cell models and in Cln5 - /- cerebral cortex, which well correlated with disease progression. A visible impairment of autophagy machinery coupled with alterations of key parameters of mitophagy activation process functionally linked CLN5 protein to the process of neuronal injury. The functional link between impaired cellular respiration and activation of mitophagy pathways in the human CLN5 disease condition was corroborated by translating organelle-specific proteome findings to CLN5 patients' fibroblasts. Our study highlights the involvement of CLN5 in activation of mitophagy and mitochondrial homeostasis offering new insights into alternative strategies towards the CLN5 disease treatment.

19.
Biochem Biophys Res Commun ; 379(4): 892-7, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19135028

ABSTRACT

The neuronal ceroid lipofuscinoses (NCL) are heterogeneous neurodegenerative disorders with typical autofluorescence material stored in tissues. Ten clinical NCL forms and eight causative genes are known. Mutations in CLN6 have been reported in roughly 30 patients, mostly in association with the variant late-infantile NCL (v-LINCL) phenotype. We screened CLN6 in 30 children from a cohort of 53 v-LINCL cases and revised their clinical and ultrastructural features. We detected 11 mutations, eight of which are novel, all predicting a direct impairing of the putative gene function. No clear-cut genotype-phenotype correlations were observed, with inter- and intra-familial variability evident for few recurrent mutations. Ultrastructural findings were suggestive of an impaired regulation of the autophagic vacuoles turnover. While expanding the array of CLN6 mutations, we showed that more than half of our v-LINCL cases lack a DNA confirmation and further molecular etiologies are to be searched.


Subject(s)
Lysosomes/ultrastructure , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Adolescent , Autophagy/genetics , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Mutation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL