Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
PLoS Pathog ; 19(12): e1011817, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38127684

ABSTRACT

It is increasingly appreciated that pathogens can spread as infectious units constituted by multiple, genetically diverse genomes, also called collective infectious units or genome collectives. However, genetic characterization of the spatial dynamics of collective infectious units in animal hosts is demanding, and it is rarely feasible in humans. Measles virus (MeV), whose spread in lymphatic tissues and airway epithelia relies on collective infectious units, can, in rare cases, cause subacute sclerosing panencephalitis (SSPE), a lethal human brain disease. In different SSPE cases, MeV acquisition of brain tropism has been attributed to mutations affecting either the fusion or the matrix protein, or both, but the overarching mechanism driving brain adaptation is not understood. Here we analyzed MeV RNA from several spatially distinct brain regions of an individual who succumbed to SSPE. Surprisingly, we identified two major MeV genome subpopulations present at variable frequencies in all 15 brain specimens examined. Both genome types accumulated mutations like those shown to favor receptor-independent cell-cell spread in other SSPE cases. Most infected cells carried both genome types, suggesting the possibility of genetic complementation. We cannot definitively chart the history of the spread of this virus in the brain, but several observations suggest that mutant genomes generated in the frontal cortex moved outwards as a collective and diversified. During diversification, mutations affecting the cytoplasmic tails of both viral envelope proteins emerged and fluctuated in frequency across genetic backgrounds, suggesting convergent and potentially frequency-dependent evolution for modulation of fusogenicity. We propose that a collective infectious unit drove MeV pathogenesis in this brain. Re-examination of published data suggests that similar processes may have occurred in other SSPE cases. Our studies provide a primer for analyses of the evolution of collective infectious units of other pathogens that cause lethal disease in humans.


Subject(s)
Measles , Subacute Sclerosing Panencephalitis , Animals , Humans , Subacute Sclerosing Panencephalitis/genetics , Subacute Sclerosing Panencephalitis/pathology , Measles virus/genetics , Measles virus/metabolism , Measles/genetics , Measles/metabolism , Brain/pathology , Tropism/genetics
2.
J Virol ; 96(22): e0131922, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36300942

ABSTRACT

Many negative-sense RNA viruses, including measles virus (MeV), are thought to carry out much of their viral replication in cytoplasmic membraneless foci known as inclusion bodies (IBs). The mechanisms by which IBs facilitate efficient viral replication remain largely unknown but may involve an intricate network of regulation at the host-virus interface. Viruses are able to modulate such interactions by a variety of strategies including adaptation of their genomes and "hijacking" of host proteins. The latter possibility broadens the molecular reservoir available for a virus to enhance its replication and/or antagonize host antiviral responses. Here, we show that the cellular 5'-3' exoribonuclease, XRN1, is a host protein hijacked by MeV. We found that upon MeV infection, XRN1 is translocated to cytoplasmic IBs where it acts in a proviral manner by preventing the accumulation of double-stranded RNA (dsRNA) within the IBs. This leads to the suppression of the dsRNA-induced innate immune responses mediated via the protein kinase R (PKR)-integrated stress response (ISR) pathway. IMPORTANCE Measles virus remains a major global health threat due to its high transmissibility and significant morbidity in children and immunocompromised individuals. Although there is an effective vaccine against MeV, a large population in the world remains without access to the vaccine, contributing to more than 7,000,000 measles cases and 60,000 measles deaths in 2020 (CDC). For negative-sense RNA viruses including MeV, one active research area is the exploration of virus-host interactions occurring at cytoplasmic IBs where viral replication takes place. In this study we present evidence suggesting a model in which MeV IBs antagonize host innate immunity by recruiting XRN1 to reduce dsRNA accumulation and subsequent PKR kinase activation/ISR induction. In the absence of XRN1, the increased dsRNA level acts as a potent activator of the antiviral PKR/ISR pathway leading to suppression of global cap-dependent mRNA translation and inhibition of viral replication.


Subject(s)
Exoribonucleases , Measles , Microtubule-Associated Proteins , Virus Replication , Humans , eIF-2 Kinase/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Measles/genetics , Measles/virology , Measles virus/genetics , Measles virus/physiology , Microtubule-Associated Proteins/metabolism , Protein Kinases/metabolism , Proviruses/genetics , RNA, Double-Stranded , Inclusion Bodies, Viral
3.
PLoS Pathog ; 17(4): e1009064, 2021 04.
Article in English | MEDLINE | ID: mdl-33882114

ABSTRACT

Vaccines of outstanding efficiency, safety, and public acceptance are needed to halt the current SARS-CoV-2 pandemic. Concerns include potential side effects caused by the antigen itself and safety of viral DNA and RNA delivery vectors. The large SARS-CoV-2 spike (S) protein is the main target of current COVID-19 vaccine candidates but can induce non-neutralizing antibodies, which might cause vaccination-induced complications or enhancement of COVID-19 disease. Besides, encoding of a functional S in replication-competent virus vector vaccines may result in the emergence of viruses with altered or expanded tropism. Here, we have developed a safe single round rhabdovirus replicon vaccine platform for enhanced presentation of the S receptor-binding domain (RBD). Structure-guided design was employed to build a chimeric minispike comprising the globular RBD linked to a transmembrane stem-anchor sequence derived from rabies virus (RABV) glycoprotein (G). Vesicular stomatitis virus (VSV) and RABV replicons encoding the minispike not only allowed expression of the antigen at the cell surface but also incorporation into the envelope of secreted non-infectious particles, thus combining classic vector-driven antigen expression and particulate virus-like particle (VLP) presentation. A single dose of a prototype replicon vaccine complemented with VSV G, VSVΔG-minispike-eGFP (G), stimulated high titers of SARS-CoV-2 neutralizing antibodies in mice, equivalent to those found in COVID-19 patients, and protected transgenic K18-hACE2 mice from COVID-19-like disease. Homologous boost immunization further enhanced virus neutralizing activity. The results demonstrate that non-spreading rhabdovirus RNA replicons expressing minispike proteins represent effective and safe alternatives to vaccination approaches using replication-competent viruses and/or the entire S antigen.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization/methods , SARS-CoV-2/immunology , Vaccines, Virus-Like Particle/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL
4.
Brain Behav Immun ; 112: 51-76, 2023 08.
Article in English | MEDLINE | ID: mdl-37236326

ABSTRACT

The contribution of circulating verses tissue resident memory T cells (TRMs) to clinical neuropathology is an enduring question due to a lack of mechanistic insights. The prevailing view is TRMs are protective against pathogens in the brain. However, the extent to which antigen-specific TRMs induce neuropathology upon reactivation is understudied. Using the described phenotype of TRMs, we found that brains of naïve mice harbor populations of CD69+ CD103- T cells. Notably, numbers of CD69+ CD103- TRMs rapidly increase following neurological insults of various origins. This TRM expansion precedes infiltration of virus antigen-specific CD8 T cells and is due to proliferation of T cells within the brain. We next evaluated the capacity of antigen-specific TRMs in the brain to induce significant neuroinflammation post virus clearance, including infiltration of inflammatory myeloid cells, activation of T cells in the brain, microglial activation, and significant blood brain barrier disruption. These neuroinflammatory events were induced by TRMs, as depletion of peripheral T cells or blocking T cell trafficking using FTY720 did not change the neuroinflammatory course. Depletion of all CD8 T cells, however, completely abrogated the neuroinflammatory response. Reactivation of antigen-specific TRMs in the brain also induced profound lymphopenia within the blood compartment. We have therefore determined that antigen-specific TRMs can induce significant neuroinflammation, neuropathology, and peripheral immunosuppression. The use of cognate antigen to reactivate CD8 TRMs enables us to isolate the neuropathologic effects induced by this cell type independently of other branches of immunological memory, differentiating this work from studies employing whole pathogen re-challenge. This study also demonstrates the capacity for CD8 TRMs to contribute to pathology associated with neurodegenerative disorders and long-term complications associated with viral infections. Understanding functions of brain TRMs is crucial in investigating their role in neurodegenerative disorders including MS, CNS cancers, and long-term complications associated with viral infections including COVID-19.


Subject(s)
COVID-19 , Virus Diseases , Mice , Animals , Memory T Cells , Neuroinflammatory Diseases , CD8-Positive T-Lymphocytes , Brain , Immunologic Memory
5.
J Virol ; 95(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33239455

ABSTRACT

Paramyxoviruses, including members of the genus Morbillivirus, express accessory proteins with ancillary functions during viral replication. One of these, the C protein, is expressed from an alternate open reading frame (ORF) located in the P gene. The measles virus (MeV) C protein has been implicated in modulation of interferon signaling, but has more recently been shown to play a vital role in regulation of viral transcription and replication, preventing the excessive production of double-stranded RNA. Failure to do so, as seen with C-deficient MeV, leads to early activation of innate immune responses resulting in restriction of viral replication and attenuation in the host. One puzzling aspect of morbillivirus C protein biology has been the finding that a C-deficient canine distemper virus (CDV) generated with a similar mutagenesis strategy displayed no attenuation in ferrets, an animal model commonly used to evaluate CDV pathogenesis. To resolve how virus lacking this protein could maintain virulence, we re-visited the CDV C protein and found that truncated C proteins are expressed from the CDV gene using alternative downstream start codons even when the first start codon was disrupted. We introduced an additional point mutation abrogating expression of these truncated C proteins. A new CDV with this mutation was attenuated in vitro and led to increased activation of protein kinase R. It was also strongly attenuated in ferrets, inducing only mild disease in infected animals, thus replicating the phenotype of C-deficient MeV. Our results demonstrate the crucial role of morbillivirus C proteins in pathogenesis.IMPORTANCE The measles (MeV) and canine distemper viruses (CDV) express accessory proteins that regulate the host immune response and enhance replication. The MeV C protein is critical in preventing the generation of excess immunostimulatory double-stranded RNA. C protein-deficient MeV is strongly attenuated compared to wild-type virus, whereas CDV with a similarly disrupted C open reading frame is fully pathogenic. Here we show that CDV can compensate the disrupting mutations by expression of truncated, but apparently functional C proteins from several alternative start codons. We generated a new recombinant CDV that does not express these truncated C protein. This virus was attenuated both in cell culture and in ferrets, and finally resolves the paradox of the MeV and CDV C proteins, showing that both in fact have similar functions important for viral pathogenesis.

6.
J Virol ; 95(10)2021 04 26.
Article in English | MEDLINE | ID: mdl-33658347

ABSTRACT

Transcriptional profiling provides global snapshots of virus-mediated cellular reprogramming, which can simultaneously encompass pro- and antiviral components. To determine early transcriptional signatures associated with HCV infection of authentic target cells, we performed ex vivo infections of adult primary human hepatocytes (PHHs) from seven donors. Longitudinal sampling identified minimal gene dysregulation at six hours post infection (hpi). In contrast, at 72 hpi, massive increases in the breadth and magnitude of HCV-induced gene dysregulation were apparent, affecting gene classes associated with diverse biological processes. Comparison with HCV-induced transcriptional dysregulation in Huh-7.5 cells identified limited overlap between the two systems. Of note, in PHHs, HCV infection initiated broad upregulation of canonical interferon (IFN)-mediated defense programs, limiting viral RNA replication and abrogating virion release. We further find that constitutive expression of IRF1 in PHHs maintains a steady-state antiviral program in the absence of infection, which can additionally reduce HCV RNA translation and replication. We also detected infection-induced downregulation of ∼90 genes encoding components of the EIF2 translation initiation complex and ribosomal subunits in PHHs, consistent with a signature of translational shutoff. As HCV polyprotein translation occurs independently of the EIF2 complex, this process is likely pro-viral: only translation initiation of host transcripts is arrested. The combination of antiviral intrinsic and inducible immunity, balanced against pro-viral programs, including translational arrest, maintains HCV replication at a low-level in PHHs. This may ultimately keep HCV under the radar of extra-hepatocyte immune surveillance while initial infection is established, promoting tolerance, preventing clearance and facilitating progression to chronicity.IMPORTANCEAcute HCV infections are often asymptomatic and therefore frequently undiagnosed. We endeavored to recreate this understudied phase of HCV infection using explanted PHHs and monitored host responses to initial infection. We detected temporally distinct virus-induced perturbations in the transcriptional landscape, which were initially narrow but massively amplified in breadth and magnitude over time. At 72 hpi, we detected dysregulation of diverse gene programs, concurrently promoting both virus clearance and virus persistence. On the one hand, baseline expression of IRF1 combined with infection-induced upregulation of IFN-mediated effector genes suppresses virus propagation. On the other, we detect transcriptional signatures of host translational inhibition, which likely reduces processing of IFN-regulated gene transcripts and facilitates virus survival. Together, our data provide important insights into constitutive and virus-induced transcriptional programs in PHHs, and identifies simultaneous antagonistic dysregulation of pro-and anti-viral programs which may facilitate host tolerance and promote viral persistence.

7.
Biomacromolecules ; 23(9): 3593-3601, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35904477

ABSTRACT

Influenza A viruses (IAV), including the pandemic 2009 (pdm09) H1N1 or avian influenza H5N1 virus, may advance into more pathogenic, potentially antiviral drug-resistant strains (including loss of susceptibility against oseltamivir). Such IAV strains fuel the risk of future global outbreaks, to which this study responds by re-engineering Interferon-α2a (IFN-α2a) bioconjugates into influenza therapeutics. Type-I interferons such as IFN-α2a play an essential role in influenza infection and may prevent serious disease courses. We site-specifically conjugated a genetically engineered IFN-α2a mutant to poly(2-ethyl-2-oxazoline)s (PEtOx) of different molecular weights by strain-promoted azide-alkyne cyclo-addition. The promising pharmacokinetic profile of the 25 kDa PEtOx bioconjugate in mice echoed an efficacy in IAV-infected ferrets. One intraperitoneal administration of this bioconjugate, but not the marketed IFN-α2a bioconjugate, changed the disease course similar to oseltamivir, given orally twice every study day. PEtOxylated IFN-α2a bioconjugates may expand our therapeutic arsenal against future influenza pandemics, particularly in light of rising first-line antiviral drug resistance to IAV.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Animals , Antiviral Agents/pharmacology , Ferrets , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/drug therapy , Mice , Oseltamivir/pharmacology , Oseltamivir/therapeutic use
8.
J Cell Sci ; 132(16)2019 08 23.
Article in English | MEDLINE | ID: mdl-31331966

ABSTRACT

Here, we show that cells expressing the adherens junction protein nectin-1 capture nectin-4-containing membranes from the surface of adjacent cells in a trans-endocytosis process. We find that internalized nectin-1-nectin-4 complexes follow the endocytic pathway. The nectin-1 cytoplasmic tail controls transfer: its deletion prevents trans-endocytosis, while its exchange with the nectin-4 tail reverses transfer direction. Nectin-1-expressing cells acquire dye-labeled cytoplasmic proteins synchronously with nectin-4, a process most active during cell adhesion. Some cytoplasmic cargo remains functional after transfer, as demonstrated with encapsidated genomes of measles virus (MeV). This virus uses nectin-4, but not nectin-1, as a receptor. Epithelial cells expressing nectin-4, but not those expressing another MeV receptor in its place, can transfer infection to nectin-1-expressing primary neurons. Thus, this newly discovered process can move cytoplasmic cargo, including infectious material, from epithelial cells to neurons. We name the process nectin-elicited cytoplasm transfer (NECT). NECT-related trans-endocytosis processes may be exploited by pathogens to extend tropism. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cell Adhesion Molecules/metabolism , Endocytosis , Epithelial Cells/metabolism , Measles virus/metabolism , Nectins/metabolism , Virus Internalization , Biological Transport, Active/genetics , Cell Adhesion/genetics , Cell Adhesion Molecules/genetics , Cell Line , Humans , Measles virus/genetics , Nectins/genetics
9.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31748390

ABSTRACT

Measles virus (MeV), like all viruses of the order Mononegavirales, utilizes a complex consisting of genomic RNA, nucleoprotein, the RNA-dependent RNA polymerase, and a polymerase cofactor, the phosphoprotein (P), for transcription and replication. We previously showed that a recombinant MeV that does not express another viral protein, C, has severe transcription and replication deficiencies, including a steeper transcription gradient than the parental virus and generation of defective interfering RNA. This virus is attenuated in vitro and in vivo However, how the C protein operates and whether it is a component of the replication complex remained unclear. Here, we show that C associates with the ribonucleocapsid and forms a complex that can be purified by immunoprecipitation or ultracentrifugation. In the presence of detergent, the C protein is retained on purified ribonucleocapsids less efficiently than the P protein and the polymerase. The C protein is recruited to the ribonucleocapsid through its interaction with the P protein, as shown by immunofluorescence microscopy of cells expressing different combinations of viral proteins and by split luciferase complementation assays. Forty amino-terminal C protein residues are dispensable for the interaction with P, and the carboxyl-terminal half of P is sufficient for the interaction with C. Thus, the C protein, rather than being an "accessory" protein as qualified in textbooks so far, is a ribonucleocapsid-associated protein that interacts with P, thereby increasing replication accuracy and processivity of the polymerase complex.IMPORTANCE Replication of negative-strand RNA viruses relies on two components: a helical ribonucleocapsid and an RNA-dependent RNA polymerase composed of a catalytic subunit, the L protein, and a cofactor, the P protein. We show that the measles virus (MeV) C protein is an additional component of the replication complex. We provide evidence that the C protein is recruited to the ribonucleocapsid by the P protein and map the interacting segments of both C and P proteins. We conclude that the primary function of MeV C is to improve polymerase processivity and accuracy, rather than uniquely to antagonize the type I interferon response. Since most viruses of the Paramyxoviridae family express C proteins, their primary function may be conserved.


Subject(s)
Measles virus/metabolism , Nucleoproteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Proteins/genetics , Animals , Carrier Proteins , Cell Line , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Measles/virology , Measles virus/genetics , Nucleocapsid Proteins , Nucleoproteins/metabolism , Phosphoproteins/metabolism , Protein Binding , RNA-Dependent RNA Polymerase/metabolism , Vero Cells , Viral Nonstructural Proteins/physiology , Viral Proteins/metabolism , Virus Activation/genetics , Virus Replication/genetics
10.
PLoS Pathog ; 15(2): e1007605, 2019 02.
Article in English | MEDLINE | ID: mdl-30768648

ABSTRACT

Measles virus (MeV) is dual-tropic: it replicates first in lymphatic tissues and then in epithelial cells. This switch in tropism raises the question of whether, and how, intra-host evolution occurs. Towards addressing this question, we adapted MeV either to lymphocytic (Granta-519) or epithelial (H358) cells. We also passaged it consecutively in both human cell lines. Since passaged MeV had different replication kinetics, we sought to investigate the underlying genetic mechanisms of growth differences by performing deep-sequencing analyses. Lymphocytic adaptation reproducibly resulted in accumulation of variants mapping within an 11-nucleotide sequence located in the middle of the phosphoprotein (P) gene. This sequence mediates polymerase slippage and addition of a pseudo-templated guanosine to the P mRNA. This form of co-transcriptional RNA editing results in expression of an interferon antagonist, named V, in place of a polymerase co-factor, named P. We show that lymphocytic-adapted MeV indeed produce minimal amounts of edited transcripts and V protein. In contrast, parental and epithelial-adapted MeV produce similar levels of edited and non-edited transcripts, and of V and P proteins. Raji, another lymphocytic cell line, also positively selects V-deficient MeV genomes. On the other hand, in epithelial cells V-competent MeV genomes rapidly out-compete the V-deficient variants. To characterize the mechanisms of genome re-equilibration we rescued four recombinant MeV carrying individual editing site-proximal mutations. Three mutations interfered with RNA editing, resulting in almost exclusive P protein expression. The fourth preserved RNA editing and a standard P-to-V protein expression ratio. However, it altered a histidine involved in Zn2+ binding, inactivating V function. Thus, the lymphocytic environment favors replication of V-deficient MeV, while the epithelial environment has the opposite effect, resulting in rapid and thorough cyclical quasispecies re-equilibration. Analogous processes may occur in natural infections with other dual-tropic RNA viruses.


Subject(s)
Measles virus/metabolism , Phosphoproteins/metabolism , Viral Proteins/metabolism , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/virology , High-Throughput Nucleotide Sequencing/methods , Humans , Lymphocytes/metabolism , Lymphocytes/virology , Measles , Measles virus/pathogenicity , Phosphoproteins/genetics , Quasispecies/genetics , Quasispecies/immunology , RNA Editing/genetics , RNA, Messenger/genetics , Transcription, Genetic , Viral Proteins/genetics , Virus Replication/genetics
11.
PLoS Biol ; 16(11): e2006577, 2018 11.
Article in English | MEDLINE | ID: mdl-30496178

ABSTRACT

The interferon (IFN)-mediated innate immune response is the first line of defense against viruses. However, an IFN-stimulated gene, the adenosine deaminase acting on RNA 1 (ADAR1), favors the replication of several viruses. ADAR1 binds double-stranded RNA and converts adenosine to inosine by deamination. This form of editing makes duplex RNA unstable, thereby preventing IFN induction. To better understand how ADAR1 works at the cellular level, we generated cell lines that express exclusively either the IFN-inducible, cytoplasmic isoform ADAR1p150, the constitutively expressed nuclear isoform ADAR1p110, or no isoform. By comparing the transcriptome of these cell lines, we identified more than 150 polymerase II transcripts that are extensively edited, and we attributed most editing events to ADAR1p150. Editing is focused on inverted transposable elements, located mainly within introns and untranslated regions, and predicted to form duplex RNA structures. Editing of these elements occurs also in primary human samples, and there is evidence for cross-species evolutionary conservation of editing patterns in primates and, to a lesser extent, in rodents. Whereas ADAR1p150 rarely edits tightly encapsidated standard measles virus (MeV) genomes, it efficiently edits genomes with inverted repeats accidentally generated by a mutant MeV. We also show that immune activation occurs in fully ADAR1-deficient (ADAR1KO) cells, restricting virus growth, and that complementation of these cells with ADAR1p150 rescues virus growth and suppresses innate immunity activation. Finally, by knocking out either protein kinase R (PKR) or mitochondrial antiviral signaling protein (MAVS)-another protein controlling the response to duplex RNA-in ADAR1KO cells, we show that PKR activation elicits a stronger antiviral response. Thus, ADAR1 prevents innate immunity activation by cellular transcripts that include extensive duplex RNA structures. The trade-off is that viruses take advantage of ADAR1 to elude innate immunity control.


Subject(s)
Adenosine Deaminase/physiology , RNA Viruses/genetics , RNA-Binding Proteins/physiology , Adenosine/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , HeLa Cells , Humans , Immunity, Innate/physiology , Interferons/metabolism , Protein Isoforms , Proviruses/genetics , Proviruses/immunology , RNA Viruses/metabolism , RNA, Double-Stranded/physiology , RNA, Viral/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcriptome/genetics , Virion/genetics
12.
Brain ; 143(12): 3629-3652, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33253355

ABSTRACT

Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Immune Tolerance , Inflammation Mediators/metabolism , Animals , Bone Marrow Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Disease Progression , Female , Genes, MHC Class II/genetics , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/immunology , Glioma/metabolism , Glioma/pathology , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Parabiosis , Seizures/chemically induced , Spleen/immunology , Spleen/pathology , Theilovirus , Thymus Gland/pathology
13.
J Virol ; 92(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29237839

ABSTRACT

Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5-deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication.IMPORTANCE Measles virus is a human pathogen that remains a global concern, with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here, we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that enhances the replication of measles virus.


Subject(s)
Cytoplasm/virology , Histone-Lysine N-Methyltransferase/metabolism , Inclusion Bodies, Viral/physiology , Measles virus/physiology , Measles/virology , Viral Proteins/metabolism , Virus Replication , HeLa Cells , Histone-Lysine N-Methyltransferase/genetics , Humans , Intracellular Signaling Peptides and Proteins , Measles/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Proteins/genetics
14.
J Virol ; 89(15): 7735-47, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25972541

ABSTRACT

UNLABELLED: Defective interfering RNAs (DI-RNAs) of the viral genome can form during infections of negative-strand RNA viruses and outgrow full-length viral genomes, thereby modulating the severity and duration of infection. Here we document the frequent de novo generation of copy-back DI-RNAs from independent rescue events both for a vaccine measles virus (vac2) and for a wild-type measles virus (IC323) as early as passage 1 after virus rescue. Moreover, vaccine and wild-type C-protein-deficient (C-protein-knockout [CKO]) measles viruses generated about 10 times more DI-RNAs than parental virus, suggesting that C enhances the processivity of the viral polymerase. We obtained the nucleotide sequences of 65 individual DI-RNAs, identified breakpoints and reinitiation sites, and predicted their structural features. Several DI-RNAs possessed clusters of A-to-G or U-to-C transitions. Sequences flanking these mutation sites were characteristic of those favored by adenosine deaminase acting on RNA-1 (ADAR1), which catalyzes in double-stranded RNA the C-6 deamination of adenosine to produce inosine, which is recognized as guanosine, a process known as A-to-I RNA editing. In individual DI-RNAs the transitions were of the same type and occurred on both sides of the breakpoint. These patterns of mutations suggest that ADAR1 edits unencapsidated DI-RNAs that form double-strand RNA structures. Encapsidated DI-RNAs were incorporated into virus particles, which reduced the infectivity of virus stocks. The CKO phenotype was dominant: DI-RNAs derived from vac2 with a CKO suppressed the replication of vac2, as shown by coinfections of interferon-incompetent lymphatic cells with viruses expressing different fluorescent reporter proteins. In contrast, coinfection with a C-protein-expressing virus did not counteract the suppressive phenotype of DI-RNAs. IMPORTANCE: Recombinant measles viruses (MVs) are in clinical trials as cancer therapeutics and as vectored vaccines for HIV-AIDS and other infectious diseases. The efficacy of MV-based vectors depends on their replication proficiency and immune activation capacity. Here we document that copy-back defective interfering RNAs (DI-RNAs) are generated by recombinant vaccine and wild-type MVs immediately after rescue. The MV C protein interferes with DI-RNA generation and may enhance the processivity of the viral polymerase. We frequently detected clusters of A-to-G or U-to-C transitions and noted that sequences flanking individual mutations contain motifs favoring recognition by the adenosine deaminase acting on RNA-1 (ADAR1). The consistent type of transitions on the DI-RNAs indicates that these are direct substrates for editing by ADAR1. The ADAR1-mediated biased hypermutation events are consistent with the protein kinase R (PKR)-ADAR1 balancing model of innate immunity activation. We show by coinfection that the C-defective phenotype is dominant.


Subject(s)
Adenosine Deaminase/genetics , Measles virus/genetics , Measles/enzymology , Mutation , RNA, Small Interfering/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Viral Nonstructural Proteins/genetics , Adenosine Deaminase/metabolism , Gene Expression Regulation, Viral , Humans , Measles/genetics , Measles/virology , Measles virus/metabolism , Protein Stability , RNA Editing , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Viral Nonstructural Proteins/metabolism
15.
J Virol ; 88(1): 456-68, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24155404

ABSTRACT

Measles virus (MV) lacking expression of C protein (C(KO)) is a potent activator of the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), whereas the isogenic parental virus expressing C protein is not. Here, we demonstrate that significant amounts of dsRNA accumulate during C(KO) mutant infection but not following parental virus infection. dsRNA accumulated during late stages of infection and localized with virus replication sites containing N and P proteins. PKR autophosphorylation and stress granule formation correlated with the timing of dsRNA appearance. Phospho-PKR localized to dsRNA-containing structures as revealed by immunofluorescence. Production of dsRNA was sensitive to cycloheximide but resistant to actinomycin D, suggesting that dsRNA is a viral product. Quantitative PCR (qPCR) analyses revealed reduced viral RNA synthesis and a steepened transcription gradient in C(KO) virus-infected cells compared to those in parental virus-infected cells. The observed alterations were further reflected in lower viral protein expression levels and reduced C(KO) virus infectious yield. RNA deep sequencing confirmed the viral RNA expression profile differences seen by qPCR between C(KO) mutant and parental viruses. After one subsequent passage of the C(KO) virus, defective interfering RNA (DI-RNA) with a duplex structure was obtained that was not seen with the parental virus. We conclude that in the absence of C protein, the amount of PKR activator RNA, including DI-RNA, is increased, thereby triggering innate immune responses leading to impaired MV growth.


Subject(s)
Measles virus/metabolism , Protein Kinases/metabolism , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Viral Proteins/physiology , Base Sequence , Cell Line , Cycloheximide/pharmacology , DNA Primers , Dactinomycin/pharmacology , Enzyme Activation , High-Throughput Nucleotide Sequencing , Humans , Measles virus/genetics , Phosphorylation , Polymerase Chain Reaction , RNA, Double-Stranded/drug effects , RNA, Viral/drug effects
16.
Methods Mol Biol ; 2808: 71-88, 2024.
Article in English | MEDLINE | ID: mdl-38743363

ABSTRACT

Copy-back defective interfering RNAs are major contaminants of viral stock preparations of morbilliviruses and other negative strand RNA viruses. They are hybrid molecules of positive sense antigenome and negative sense genome. They possess perfectly complementary ends allowing the formation of extremely stable double-stranded RNA panhandle structures. The presence of the 3'-terminal promoter allows replication of these molecules by the viral polymerase. They thereby negatively interfere with replication of standard genomes. In addition, the double-stranded RNA stem structures are highly immunostimulatory and activate antiviral cell-intrinsic innate immune responses. Thus, copy-back defective interfering RNAs severely affect the virulence and pathogenesis of morbillivirus stocks. We describe two biochemical methods to analyze copy-back defective interfering RNAs in virus-infected samples, or purified viral RNA. First, we present our Northern blotting protocol that allows accurate size determination of defective interfering RNA molecules and estimation of the relative contamination level of virus preparations. Second, we describe a PCR approach to amplify defective interfering RNAs specifically, which allows detailed sequence analysis.


Subject(s)
Morbillivirus , RNA, Viral , RNA, Viral/genetics , Morbillivirus/genetics , Animals , Blotting, Northern , Virus Replication/genetics , Polymerase Chain Reaction/methods , RNA, Small Interfering/genetics , Genome, Viral , RNA, Double-Stranded/genetics , Humans
17.
Methods Mol Biol ; 2808: 197-208, 2024.
Article in English | MEDLINE | ID: mdl-38743372

ABSTRACT

Canine distemper virus (CDV) is a highly contagious pathogen within the morbillivirus genus infecting a wide range of different carnivore species. The virus shares most biological features with other closely related morbilliviruses, including clinical signs, tissue tropism, and replication cycle in the respective host organisms.In the laboratory environment, experimental infections of ferrets with CDV were established as a potent surrogate model for the analysis of several aspects of the biology of the human morbillivirus, measles virus (MeV). The animals are naturally susceptible to CDV and display severe clinical signs resembling the disease seen in patients infected with MeV. As seen with MeV, CDV infects immune cells and is thus associated with a strong transient immunosuppression. Here we describe several methods to evaluate viral load and parameters of immunosuppression in blood-circulating immune cells isolated from CDV-infected animals.


Subject(s)
Disease Models, Animal , Distemper Virus, Canine , Distemper , Ferrets , Viral Load , Animals , Ferrets/virology , Distemper Virus, Canine/pathogenicity , Distemper/virology , Distemper/pathology
18.
J Virol ; 86(2): 796-805, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072748

ABSTRACT

Transcriptional induction of beta interferon (IFN-ß) through pattern recognition receptors is a key event in the host defense against invading viruses. Infection of cells by paramyxoviruses, like measles virus (MV) (genus Morbillivirus), is sensed predominantly by the ubiquitous cytoplasmic helicase RIG-I, recognizing viral 5'-triphosphate RNAs, and to some degree by MDA5. While MDA5 activation is effectively prevented by the MV V protein, the viral mechanisms for inhibition of MDA5-independent induction of IFN-ß remained obscure. Here, we identify the 186-amino-acid MV C protein, which shuttles between the nucleus and the cytoplasm, as a major viral inhibitor of IFN-ß transcription in human cells. Activation of the transcription factor IRF3 by upstream kinases and nuclear import of activated IRF3 were not affected in the presence of C protein, suggesting a nuclear target. Notably, C proteins of wild-type MV isolates, which are poor IFN-ß inducers, were found to comprise a canonical nuclear localization signal (NLS), whereas the NLSs of all vaccine strains, irrespective of their origins, were mutated. Site-directed mutagenesis of the C proteins from an MV wild-type isolate and from the vaccine virus strain Schwarz confirmed a correlation of nuclear localization and inhibition of IFN-ß transcription. A functional NLS and efficient nuclear accumulation are therefore critical for MV C to retain its potential to downregulate IFN-ß induction. We suggest that a defect in efficient nuclear import of C protein contributes to attenuation of MV vaccine strains.


Subject(s)
Cell Nucleus/genetics , Down-Regulation , Interferon-beta/genetics , Measles virus/metabolism , Measles/genetics , Viral Proteins/metabolism , Amino Acid Sequence , Cell Line , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Humans , Interferon-beta/metabolism , Measles/metabolism , Measles/virology , Measles virus/chemistry , Measles virus/genetics , Molecular Sequence Data , Protein Transport , Sequence Alignment , Transcription, Genetic , Viral Proteins/chemistry , Viral Proteins/genetics
19.
J Virol ; 85(7): 3162-71, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21270162

ABSTRACT

Nuclear factor κB (NF-κB) transcription factors are involved in controlling numerous cellular processes, including inflammation, innate and adaptive immunity, and cell survival. Here we show that the immunosuppressive measles virus (MV; Morbillivirus genus, Paramyxoviridae) has evolved multiple functions to interfere with canonical NF-κB signaling in epithelial cells. The MV P, V, and C proteins, also involved in preventing host cell interferon responses, were found to individually suppress NF-κB-dependent reporter gene expression in response to activation of the tumor necrosis factor (TNF) receptor, RIG-I-like receptors, or Toll-like receptors. NF-κB activity was most efficiently suppressed in the presence of V, while expression of P or C resulted in moderate inhibition. As indicated by reporter gene assays involving overexpression of the IκB kinase (IKK) complex, which phosphorylates the inhibitor of κB to liberate NF-κB, V protein targets a downstream step in the signaling cascade. Coimmunoprecipitation experiments revealed that V specifically binds to the Rel homology domain of the NF-κB subunit p65 but not of p50. Notably, the short C-terminal domain of the V protein, which is also involved in binding STAT2, IRF7, and MDA5, was sufficient for the interaction and for preventing reporter gene activity. As observed by confocal microscopy, the presence of V abolished nuclear translocation of p65 upon TNF-α stimulation. Thus, MV V appears to prevent NF-κB-dependent gene expression by retaining p65 in the cytoplasm. These findings reveal NF-κB as a key target of MV and stress the importance of the V protein as the major viral immune-modulatory factor.


Subject(s)
Immune Evasion , Measles virus/immunology , Measles virus/pathogenicity , NF-kappa B/antagonists & inhibitors , Phosphoproteins/metabolism , Transcription Factor RelA/metabolism , Viral Proteins/metabolism , Cell Line , Epithelial Cells/immunology , Epithelial Cells/virology , Genes, Reporter , Hepatocytes/immunology , Hepatocytes/virology , Humans , Immunoprecipitation , Protein Binding
20.
J Virol ; 85(2): 842-52, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21084487

ABSTRACT

The rabies virus (RV) phosphoprotein (P) is a type I interferon (IFN) antagonist preventing both transcriptional induction of IFN and IFN-mediated JAK/STAT signaling. In addition, P is an essential cofactor of the viral polymerase and is required for encapsidation of viral RNA into nucleoprotein during replication. By site-directed mutagenesis, we have identified a domain of P required for efficient inhibition of IFN induction. Phosphoproteins lacking amino acids (aa) 176 to 181, 182 to 186, or 176 to 186 were severely compromised in counteracting phosphorylation of IRF3 and IRF7 by TBK1 or IKKi while retaining the full capacity of preventing nuclear import of activated STATs and of supporting virus transcription and replication. Recombinant RV carrying the mutated phosphoproteins (the SAD ΔInd1, SAD ΔInd2, and SAD ΔInd1/2 viruses) activated IRF3 and beta IFN (IFN-ß) transcription in infected cells but still blocked STAT-mediated expression of IFN-stimulated genes. Due to a somewhat higher transcription rate, the SAD ΔInd1 virus activated IRF3 more efficiently than the SAD ΔInd2 virus. After intracerebral injection into mouse brains at high doses, the SAD ΔInd1 virus was completely apathogenic for wild-type (wt) mice, while the SAD ΔInd2 virus was partially attenuated and caused a slower progression of lethal rabies than wt RV. Neurovirulence of IFN-resistant RV thus correlates with the capacity of the virus to prevent activation of IRF3 and IRF7.


Subject(s)
Interferon Regulatory Factor-3/antagonists & inhibitors , Interferon Regulatory Factor-7/antagonists & inhibitors , Interferon-beta/antagonists & inhibitors , Phosphoproteins/genetics , Phosphoproteins/metabolism , Rabies virus/immunology , Rabies virus/pathogenicity , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism , Animals , Brain/pathology , Brain/virology , Cell Line , Disease Models, Animal , Female , I-kappa B Kinase , Male , Mice , Mice, Transgenic , Molecular Chaperones , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases , Rabies/pathology , Rabies/virology , Rabies virus/genetics , Survival Analysis , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL