Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Commun ; 14(1): 7435, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37973913

ABSTRACT

SND1 and MTDH are known to promote cancer and therapy resistance, but their mechanisms and interactions with other oncogenes remain unclear. Here, we show that oncoprotein ERG interacts with SND1/MTDH complex through SND1's Tudor domain. ERG, an ETS-domain transcription factor, is overexpressed in many prostate cancers. Knocking down SND1 in human prostate epithelial cells, especially those overexpressing ERG, negatively impacts cell proliferation. Transcriptional analysis shows substantial overlap in genes regulated by ERG and SND1. Mechanistically, we show that ERG promotes nuclear localization of SND1/MTDH. Forced nuclear localization of SND1 prominently increases its growth promoting function irrespective of ERG expression. In mice, prostate-specific Snd1 deletion reduces cancer growth and tumor burden in a prostate cancer model (PB-Cre/Ptenflox/flox/ERG mice), Moreover, we find a significant overlap between prostate transcriptional signatures of ERG and SND1. These findings highlight SND1's crucial role in prostate tumorigenesis, suggesting SND1 as a potential therapeutic target in prostate cancer.


Subject(s)
Prostatic Neoplasms , Animals , Humans , Male , Mice , Cell Transformation, Neoplastic/genetics , Endonucleases/genetics , Endonucleases/metabolism , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism , Tudor Domain
SELECTION OF CITATIONS
SEARCH DETAIL