Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 59(3): 1286-1294, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31714661

ABSTRACT

Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between mechanical and thermal properties is missing, due to the lack of measurements of direction-dependent mechanical properties. In this work, exceptionally coherent and transparent hybrid Bragg stacks made of strictly alternating mica-type nanosheets (synthetic hectorite) and polymer layers (polyvinylpyrrolidone) were fabricated at large scale. Distinct from ordinary nanocomposites, these stacks display long-range periodicity, which is tunable down to angstrom precision. A large thermal transport anisotropy (up to 38) is consequently observed, with the high in-plane thermal conductivity (up to 5.7 W m-1 K-1 ) exhibiting an effective medium behavior. The unique hybrid material combined with advanced characterization techniques allows correlating the full elastic tensors to the direction-dependent thermal conductivities. We, therefore, provide a first analysis on how the direction-dependent Young's and shear moduli influence the flow of heat.

2.
Anal Chem ; 91(13): 8476-8483, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31148451

ABSTRACT

We present an extension of the well-known slopes method for characterization of the in-plane thermal diffusivity of semitransparent polymer films. We introduce a theoretical model which considers heat losses due to convection and radiation mechanisms, as well as semitransparency of the material to the exciting laser heat source (visible range) and multiple reflections at the film surfaces. Most importantly, a potential semitransparency of the material in the IR detection range is also considered. We prove by numerical simulations and by an asymptotic expansion of the surface temperature that the slopes method is also valid for any semitransparent film in the thermally thin regime. Measurements of the in-plane thermal diffusivity performed on semitransparent polymer films covering a wide range of absorption coefficients (to the exciting wavelength and in the IR detection range of our IR camera) validate our theoretical findings.

3.
Soft Matter ; 10(1): 214-26, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24651844

ABSTRACT

Polymer-shelled magnetic microbubbles have great potential as hybrid contrast agents for ultrasound and magnetic resonance imaging. In this work, we studied US/MRI contrast agents based on air-filled poly(vinyl alcohol)-shelled microbubbles combined with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are integrated either physically or chemically into the polymeric shell of the microbubbles (MBs). As a result, two different designs of a hybrid contrast agent are obtained. With the physical approach, SPIONs are embedded inside the polymeric shell and with the chemical approach SPIONs are covalently linked to the shell surface. The structural design of hybrid probes is important, because it strongly determines the contrast agent's response in the considered imaging methods. In particular, we were interested how structural differences affect the shell's mechanical properties, which play a key role for the MBs' US imaging performance. Therefore, we thoroughly characterized the MBs' geometric features and investigated low-frequency mechanics by using atomic force microscopy (AFM) and high-frequency mechanics by using acoustic tests. Thus, we were able to quantify the impact of the used SPIONs integration method on the shell's elastic modulus, shear modulus and shear viscosity. In summary, the suggested approach contributes to an improved understanding of structure-property relations in US-active hybrid contrast agents and thus provides the basis for their sustainable development and optimization.

4.
ACS Appl Mater Interfaces ; 12(16): 18785-18791, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32208644

ABSTRACT

Directional control on material properties such as mechanical moduli or thermal conductivity are of paramount importance for the development of nanostructured next-generation devices. Two-dimensional materials are particularly interesting in this context owing to their inherent structural anisotropy. Here, we compare graphene oxide (GO) and synthetic clay sodium fluorohectorite (Hec) with respect to their thermal transport properties. The unique sheet structure of both allows preparation of highly ordered Bragg stacks of these pure materials. The thermal conductivity parallel to the platelets strongly exceeds that perpendicular to them. We find a significant difference in the performance between GO and synthetic clay. Our analysis of the textured structure, size of the platelets, and chemical composition shows that Hec is a superior two-dimensional component to GO. Consequently, synthetic clay is a promising material for thermal management applications in electronic devices where electrically insulating materials are prerequisites.

5.
Adv Mater ; 30(14): e1704910, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29484721

ABSTRACT

Heat transport plays a critical role in modern batteries, electrodes, and capacitors. This is caused by the ongoing miniaturization of such nanotechnological devices, which increases the local power density and hence temperature. Even worse, the introduction of heterostructures and interfaces is often accompanied by a reduction in thermal conductivity, which can ultimately lead to the failure of the entire device. Surprisingly, a fundamental understanding of the governing heat transport processes even in simple systems, such as binary particle mixtures is still missing. This contribution closes this gap and elucidates how strongly the polydispersity of a model particulate system influences the effective thermal conductivity across such a heterogeneous system. In a combined experimental and modeling approach, well-defined mixtures of monodisperse particles with varying size ratios are investigated. The transition from order to disorder can reduce the effective thermal conductivity by as much as ≈50%. This is caused by an increase in the thermal transport path length and is governed by the number of interparticle contact points. These results are of general importance for many particulate and heterostructured materials and will help to conceive improved device layouts with more reliable heat dissipation or conservation properties in the future.

6.
Phys Rev E ; 97(2-1): 022612, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29548201

ABSTRACT

The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-µm scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.

SELECTION OF CITATIONS
SEARCH DETAIL