Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Calcif Tissue Int ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641703

ABSTRACT

Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder of skeletal fragility with an incidence of roughly 1:15,000. Approximately 85% of the pathogenic variants responsible for OI are in the type I collagen genes, COL1A1 and COL1A2, with the remaining pathogenic OI variants spanning at least 20 additional genetic loci that often involve type I collagen post-translational modification, folding, and intracellular transport as well as matrix incorporation and mineralization. In addition to being the most abundant collagen in the body, type I collagen is an important structural and extracellular matrix signaling molecule in multiple organ systems and tissues. Thus, OI disease-causing variants result not only in skeletal fragility, decreased bone mineral density (BMD), kyphoscoliosis, and short stature, but can also result in hearing loss, dentinogenesis imperfecta, blue gray sclera, cardiopulmonary abnormalities, and muscle weakness. The extensive genetic and clinical heterogeneity in OI has necessitated the generation of multiple mouse models, the growing awareness of non-skeletal organ and tissue involvement, and OI being more broadly recognized as a type I collagenopathy.This has driven the investigation of mutation-specific skeletal and extra-skeletal manifestations and broadened the search of potential mechanistic therapeutic strategies. The purpose of this review is to outline several of the extra-skeletal manifestations that have recently been characterized through the use of genetically and phenotypically heterogeneous mouse models of osteogenesis imperfecta, demonstrating the significant potential impact of OI disease-causing variants as a collagenopathy (affecting multiple organ systems and tissues), and its implications to overall health.

2.
Mol Genet Metab ; 136(4): 315-323, 2022 08.
Article in English | MEDLINE | ID: mdl-35725939

ABSTRACT

Osteogenesis imperfecta (OI) is rare heritable connective tissue disorder that most often arises from mutations in the type I collagen genes, COL1A1 and COL1A2, displaying a range of symptoms including skeletal fragility, short stature, blue-gray sclera, and muscle weakness. Recent investigations into the intrinsic muscle weakness have demonstrated reduced contractile generating force in some murine models consistent with patient population studies, as well as alterations in whole body bioenergetics. Muscle weakness is found in approximately 80% of patients and has been equivocal in OI mouse models. Understanding the mechanism responsible for OI muscle weakness is crucial in building our knowledge of muscle bone cross-talk via mechanotransduction and biochemical signaling, and for potential novel therapeutic approaches. In this study we evaluated skeletal muscle mitochondrial function and whole-body bioenergetics in the heterozygous +/G610C (Amish) mouse modeling mild/moderate human type I/VI OI and minimal skeletal muscle weakness. Our analyses revealed several changes in the +/G610C mouse relative to their wildtype littermates including reduced state 3 mitochondrial respiration, increased mitochondrial citrate synthase activity, increased Parkin and p62 protein content, and an increased respiratory quotient. These changes may represent the ability of the +/G610C mouse to compensate for mitochondrial and metabolic changes that may arise due to type I collagen mutations and may also account for the lack of muscle weakness observed in the +/G610C model relative to the more severe OI models.


Subject(s)
Osteogenesis Imperfecta , Animals , Collagen Type I/genetics , Disease Models, Animal , Humans , Mechanotransduction, Cellular , Mice , Mitochondria/genetics , Mitochondria/metabolism , Muscle Weakness/genetics , Muscle Weakness/metabolism , Muscle, Skeletal/metabolism , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism
3.
Mol Genet Metab ; 132(4): 244-253, 2021 04.
Article in English | MEDLINE | ID: mdl-33674196

ABSTRACT

Osteogenesis imperfecta (OI) is a heritable connective tissue disorder with patients exhibiting bone fragility and muscle weakness. The synergistic biochemical and biomechanical relationship between bone and muscle is a critical potential therapeutic target, such that muscle weakness should not be ignored. Previous studies demonstrated mitochondrial dysfunction in the skeletal muscle of oim/oim mice, which model a severe human type III OI. Here, we further characterize this mitochondrial dysfunction and evaluate several parameters of whole body and skeletal muscle metabolism. We demonstrate reduced mitochondrial respiration in female gastrocnemius muscle, but not in liver or heart mitochondria, suggesting that mitochondrial dysfunction is not global in the oim/oim mouse. Myosin heavy chain fiber type distributions were altered in the oim/oim soleus muscle with a decrease (-33 to 50%) in type I myofibers and an increase (+31%) in type IIa myofibers relative to their wildtype (WT) littermates. Additionally, altered body composition and increased energy expenditure were observed oim/oim mice relative to WT littermates. These results suggest that skeletal muscle mitochondrial dysfunction is linked to whole body metabolic alterations and to skeletal muscle weakness in the oim/oim mouse.


Subject(s)
Energy Metabolism/genetics , Mitochondria, Heart/genetics , Muscle, Skeletal/metabolism , Osteogenesis Imperfecta/genetics , Animals , Disease Models, Animal , Femur/metabolism , Femur/pathology , Humans , Mice , Mitochondria, Heart/physiology , Muscle, Skeletal/pathology , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/pathology , Severity of Illness Index
4.
Int J Mol Sci ; 22(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34066978

ABSTRACT

Bone and muscle are highly synergistic tissues that communicate extensively via mechanotransduction and biochemical signaling. Osteogenesis imperfecta (OI) is a heritable connective tissue disorder of severe bone fragility and recently recognized skeletal muscle weakness. The presence of impaired bone and muscle in OI leads to a continuous cycle of altered muscle-bone crosstalk with weak muscles further compromising bone and vice versa. Currently, there is no cure for OI and understanding the pathogenesis of the skeletal muscle weakness in relation to the bone pathogenesis of OI in light of the critical role of muscle-bone crosstalk is essential to developing and identifying novel therapeutic targets and strategies for OI. This review will highlight how impaired skeletal muscle function contributes to the pathophysiology of OI and how this phenomenon further perpetuates bone fragility.


Subject(s)
Bone and Bones/pathology , Muscle Weakness/pathology , Muscle, Skeletal/pathology , Osteogenesis Imperfecta/pathology , Animals , Biomechanical Phenomena , Bone and Bones/physiopathology , Energy Metabolism , Humans , Muscle Weakness/physiopathology , Muscle, Skeletal/physiopathology , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/physiopathology
5.
Mol Reprod Dev ; 87(9): 927-929, 2020 09.
Article in English | MEDLINE | ID: mdl-32869432

ABSTRACT

Osteogenesis imperfecta (OI), or brittle bone disease, is most often caused by mutations in genes encoding type I collagen or proteins that process it. Women with OI have a small, but significant increase in risk of serious pregnancy complications including uterine rupture. Here, the OI mouse, Col1a2oim/oim , was used to examine the effects of collagen mutation on establishment and maintenance of pregnancy. Picrosirius birefringence was faint in Col1a2oim/oim uteri, indicating diminished collagen in the myometrium and endometrium. There was some evidence of increased uterine gland number (p = .055) and size (p = .12) in (p = .055) virgin uteri, though the they were not significantly different than controls. There were no differences in the number of corpora lutea, or the time from pairing to delivery of pups between Col1a2oim/oim and control dams, suggesting that ovulation and conception occur normally. However, when examined at Gestation Day 6.5 (postimplantation), gestation Day 10.5 (midpregnancy), and Postnatal Days 1-2, Col1a2oim/oim dams had significantly fewer viable pups than controls overall. In pairwise comparisons, the loss was only significant in the postnatal group, suggesting the gradual loss of pups over time. Overall, the Col1a2oim/oim mouse data suggest that OI impairs uterine function in pregnancy in a way that affects a small but significant number of fetuses.


Subject(s)
Infertility, Female/etiology , Osteogenesis Imperfecta/complications , Animals , Collagen Type I/genetics , Disease Models, Animal , Female , Fertility/genetics , Fetal Viability/genetics , Humans , Infertility, Female/genetics , Infertility, Female/pathology , Litter Size/genetics , Male , Mice , Mice, Transgenic , Mutation , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/pathology , Pregnancy , Pregnancy, High-Risk/genetics
6.
Proc Natl Acad Sci U S A ; 113(47): 13522-13527, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27821779

ABSTRACT

During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstntm1Sjl/+) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstntm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2oim), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2oim/+ offspring from natural mating of Mstntm1Sjl/+ dams to Col1a2oim/+sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2oim/+ dams to Col1a2oim/+ sires. Finally, increased bone biomechanical strength of Col1a2oim/+ offspring that had been transferred into Mstntm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta.


Subject(s)
Femur/physiopathology , Myostatin/metabolism , Osteogenesis Imperfecta/physiopathology , Animals , Biomarkers/blood , Biomechanical Phenomena , Body Weight , Collagen/metabolism , Disease Models, Animal , Embryo Implantation , Female , Femur/pathology , Male , Mice, Inbred C57BL , Muscle Contraction , Myostatin/deficiency , Osteoblasts/metabolism , Osteogenesis Imperfecta/blood , Osteogenesis Imperfecta/embryology , Tibia/pathology , Tibia/physiopathology
7.
Muscle Nerve ; 57(2): 294-304, 2018 02.
Article in English | MEDLINE | ID: mdl-28555931

ABSTRACT

INTRODUCTION: Osteogenesis imperfecta (OI) is characterized by skeletal fragility and muscle weakness. In this study we investigated the effects of soluble activin type IIB receptor (sActRIIB-mFc) on muscle mass and function in 2 distinct mouse models of OI: osteogenesis imperfecta murine (oim) and +/G610C. METHODS: Wild-type (WT), +/G610C, and oim/oim mice were treated from 2 to 4 months of age with Tris-buffered saline (vehicle) or sActRIIB-mFc and their hindlimb muscles evaluated for mass, morphology, and contractile function. RESULTS: sActRIIB-mFc-treated WT, +/G610C, and oim/oim mice had increased hindlimb muscle weights and myofiber cross-sectional area compared with vehicle-treated counterparts. sActRIIB-mFc-treated oim/oim mice also exhibited increased contractile function relative to vehicle-treated counterparts. DISCUSSION: Blocking endogenous ActRIIB was effective at increasing muscle size in mouse models of OI, and increasing contractile function in oim/oim mice. ActRIIB inhibitors may provide a potential mutation-specific therapeutic option for compromised muscle function in OI. Muscle Nerve 57: 294-304, 2018.


Subject(s)
Activin Receptors, Type II/genetics , Muscle, Skeletal/physiopathology , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/physiopathology , Anatomy, Cross-Sectional , Animals , Citrate (si)-Synthase/metabolism , Collagen Type I/genetics , Female , Hindlimb/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Muscle Contraction , Muscle Fibers, Skeletal/pathology , Muscle Strength , Mutation , Organ Size , Osteogenesis Imperfecta/pathology
8.
Curr Osteoporos Rep ; 16(4): 478-489, 2018 08.
Article in English | MEDLINE | ID: mdl-29909596

ABSTRACT

PURPOSE OF REVIEW: Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder of skeletal fragility and more recently muscle weakness. This review highlights our current knowledge of the impact of compromised OI muscle function on muscle-bone interactions and skeletal strength in OI. RECENT FINDINGS: The ramifications of inherent muscle weakness in OI muscle-bone interactions are just beginning to be elucidated. Studies in patients and in OI mouse models implicate altered mechanosensing, energy metabolism, mitochondrial dysfunction, and paracrine/endocrine crosstalk in the pathogenesis of OI. Compromised muscle-bone unit impacts mechanosensing and the ability of OI muscle and bone to respond to physiotherapeutic and pharmacologic treatment strategies. Muscle and bone are both compromised in OI, making it essential to understand the mechanisms responsible for both impaired muscle and bone functions and their interdependence, as this will expand and drive new physiotherapeutic and pharmacological approaches to treat OI and other musculoskeletal disorders.


Subject(s)
Bone and Bones/metabolism , Muscle Weakness/metabolism , Muscle, Skeletal/metabolism , Osteogenesis Imperfecta/metabolism , Animals , Biomechanical Phenomena , Bone and Bones/physiopathology , Cell Communication , Energy Metabolism , Humans , Mechanotransduction, Cellular , Mitochondria , Muscle Weakness/physiopathology , Muscle, Skeletal/physiopathology , Osteogenesis Imperfecta/physiopathology , Paracrine Communication
9.
Am J Pathol ; 185(7): 2000-11, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25987251

ABSTRACT

Null alleles for the COL5A1 gene and missense mutations for COL5A1 or the COL5A2 gene underlie cases of classic Ehlers-Danlos syndrome, characterized by fragile, hyperextensible skin and hypermobile joints. However, no classic Ehlers-Danlos syndrome case has yet been associated with COL5A2 null alleles, and phenotypes that might result from such alleles are unknown. We describe mice with null alleles for the Col5a2. Col5a2(-/-) homozygosity is embryonic lethal at approximately 12 days post conception. Unlike previously described mice null for Col5a1, which die at 10.5 days post conception and virtually lack collagen fibrils, Col5a2(-/-) embryos have readily detectable collagen fibrils, thicker than in wild-type controls. Differences in Col5a2(-/-) and Col5a1(-/-) fibril formation and embryonic survival suggest that α1(V)3 homotrimers, a rare collagen V isoform that occurs in the absence of sufficient levels of α2(V) chains, serve functional roles that partially compensate for loss of the most common collagen V isoform. Col5a2(+/-) adults have skin with marked hyperextensibility and reduced tensile strength at high strain but not at low strain. Col5a2(+/-) adults also have aortas with increased compliance and reduced tensile strength. Results thus suggest that COL5A2(+/-) humans, although unlikely to present with frank classic Ehlers-Danlos syndrome, are likely to have fragile connective tissues with increased susceptibility to trauma and certain chronic pathologic conditions.


Subject(s)
Collagen Type V/genetics , Collagen/genetics , Ehlers-Danlos Syndrome/genetics , Adult , Alleles , Animals , Collagen/metabolism , Collagen Type V/metabolism , Connective Tissue/abnormalities , Connective Tissue/pathology , Ehlers-Danlos Syndrome/metabolism , Ehlers-Danlos Syndrome/pathology , Female , Heterozygote , Homozygote , Humans , Male , Mice , Mice, Knockout , Mutation , Phenotype , Skin/pathology
10.
Blood ; 120(9): 1933-41, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22829629

ABSTRACT

Transplantation of whole bone marrow (BMT) as well as ex vivo-expanded mesenchymal stromal cells (MSCs) leads to striking clinical benefits in children with osteogenesis imperfecta (OI); however, the underlying mechanism of these cell therapies has not been elucidated. Here, we show that non-(plastic)-adherent bone marrow cells (NABMCs) are more potent osteoprogenitors than MSCs in mice. Translating these findings to the clinic, a T cell-depleted marrow mononuclear cell boost (> 99.99% NABMC) given to children with OI who had previously undergone BMT resulted in marked growth acceleration in a subset of patients, unambiguously indicating the therapeutic potential of bone marrow cells for these patients. Then, in a murine model of OI, we demonstrated that as the donor NABMCs differentiate to osteoblasts, they contribute normal collagen to the bone matrix. In contrast, MSCs do not substantially engraft in bone, but secrete a soluble mediator that indirectly stimulates growth, data which provide the underlying mechanism of our prior clinical trial of MSC therapy for children with OI. Collectively, our data indicate that both NABMCs and MSCs constitute effective cell therapy for OI, but exert their clinical impact by different, complementary mechanisms. The study is registered at www.clinicaltrials.gov as NCT00187018.


Subject(s)
Bone Marrow Transplantation/methods , Leukocytes, Mononuclear/transplantation , Mesenchymal Stem Cell Transplantation/methods , Osteogenesis Imperfecta/surgery , Animals , Body Height/physiology , Body Weight/physiology , Bone Matrix/metabolism , Cells, Cultured , Child , Collagen/genetics , Collagen/metabolism , Female , Flow Cytometry , Gene Expression , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Lumbar Vertebrae/growth & development , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/physiopathology , Time Factors
11.
Biomed Pharmacother ; 175: 116725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744219

ABSTRACT

Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-ß signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-ß through anti-TGF-ß monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-ß inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-ß receptor I (TßRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-ß targeting for the treatment of OI.


Subject(s)
Collagen Type I , Down-Regulation , Mesenchymal Stem Cells , Osteogenesis Imperfecta , Osteogenesis , Pyrazoles , Quinolines , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/drug therapy , Osteogenesis/drug effects , Osteogenesis/genetics , Animals , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Down-Regulation/drug effects , Collagen Type I/genetics , Collagen Type I/metabolism , Female , Quinolines/pharmacology , Mice , Child , Pyrazoles/pharmacology , Male , Cell Differentiation/drug effects , Mutation , Disease Models, Animal , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Child, Preschool , Cells, Cultured , Transforming Growth Factor beta/metabolism , Unfolded Protein Response/drug effects , Signal Transduction/drug effects
12.
Metabolites ; 13(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37367877

ABSTRACT

Myostatin (gene symbol: Mstn) is an autocrine and paracrine inhibitor of muscle growth. Pregnant mice with genetically reduced levels of myostatin give birth to offspring with greater adult muscle mass and bone biomechanical strength. However, maternal myostatin is not detectable in fetal circulations. Fetal growth is dependent on the maternal environment, and the provisioning of nutrients and growth factors by the placenta. Thus, this study examined the effect of reduced maternal myostatin on maternal and fetal serum metabolomes, as well as the placental metabolome. Fetal and maternal serum metabolomes were highly distinct, which is consistent with the role of the placenta in creating a specific fetal nutrient environment. There was no effect from myostatin on maternal glucose tolerance or fasting insulin. In comparisons between pregnant control and Mstn+/- mice, there were more significantly different metabolite concentrations in fetal serum, at 50, than in the mother's serum at 33, confirming the effect of maternal myostatin reduction on the fetal metabolic milieu. Polyamines, lysophospholipids, fatty acid oxidation, and vitamin C, in fetal serum, were all affected by maternal myostatin reduction.

13.
JBMR Plus ; 7(7): e10753, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37457877

ABSTRACT

Mutations in the COL1A1 and COL1A2 genes, which encode type I collagen, are present in around 85%-90% of osteogenesis imperfecta (OI) patients. Because type I collagen is the principal protein composition of bones, any changes in its gene sequences or synthesis can severely affect bone structure. As a result, skeletal deformity and bone frailty are defining characteristics of OI. Homozygous oim/oim mice are utilized as models of severe progressive type III OI. Bone adapts to external forces by altering its mass and architecture. Previous attempts to leverage the relationship between muscle and bone involved using a soluble activin receptor type IIB-mFc (sActRIIB-mFc) fusion protein to lower circulating concentrations of activin A and myostatin. These two proteins are part of the TGF-ß superfamily that regulate muscle and bone function. While this approach resulted in increased muscle masses and enhanced bone properties, adverse effects emerged due to ligand promiscuity, limiting clinical efficacy and obscuring the precise contributions of myostatin and activin A. In this study, we investigated the musculoskeletal and whole-body metabolism effect of treating 5-week-old wildtype (Wt) and oim/oim mice for 11 weeks with either control antibody (Ctrl-Ab) or monoclonal anti-activin A antibody (ActA-Ab), anti-myostatin antibody (Mstn-Ab), or a combination of ActA-Ab and Mstn-Ab (Combo). We demonstrated that ActA-Ab treatment minimally impacts muscle mass in oim/oim mice, whereas Mstn-Ab and Combo treatments substantially increased muscle mass and overall lean mass regardless of genotype and sex. Further, while no improvements in cortical bone microarchitecture were observed with all treatments, minimal improvements in trabecular bone microarchitecture were observed with the Combo treatment in oim/oim mice. Our findings suggest that individual or combinatorial inhibition of myostatin and activin A alone is insufficient to robustly improve femoral biomechanical and microarchitectural properties in severely affected OI mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

14.
Biol Reprod ; 86(3): 69, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22088916

ABSTRACT

Developmental exposure to high doses of the synthetic xenoestrogen diethylstilbestrol (DES) has been reported to alter femur length and strength in adult mice. However, it is not known if developmental exposure to low, environmentally relevant doses of xenoestrogens alters adult bone geometry and strength. In this study we investigated the effects of developmental exposure to low doses of DES, bisphenol A (BPA), or ethinyl estradiol (EE(2)) on bone geometry and torsional strength. C57BL/6 mice were exposed to DES, 0.1 µg/kg/day, BPA, 10 µg/kg/day, EE(2), 0.01, 0.1, or 1.0 µg/kg/day, or vehicle from Gestation Day 11 to Postnatal Day 12 via a mini-osmotic pump in the dam. Developmental Xenoestrogen exposure altered femoral geometry and strength, assessed in adulthood by micro-computed tomography and torsional strength analysis, respectively. Low-dose EE(2), DES, or BPA increased adult femur length. Exposure to the highest dose of EE(2) did not alter femur length, resulting in a nonmonotonic dose response. Exposure to EE(2) and DES but not BPA decreased tensile strength. The combined effect of increased femur length and decreased tensile strength resulted in a trend toward decreased torsional ultimate strength and energy to failure. Taken together, these results suggest that exposure to developmental exposure to environmentally relevant levels of xenoestrogens may negatively impact bone length and strength in adulthood.


Subject(s)
Diethylstilbestrol/pharmacology , Ethinyl Estradiol/pharmacology , Femur/anatomy & histology , Femur/embryology , Fetal Development/drug effects , Phenols/pharmacology , Tensile Strength/drug effects , Administration, Oral , Animals , Benzhydryl Compounds , Biomechanical Phenomena , Collagen/metabolism , Diethylstilbestrol/administration & dosage , Dose-Response Relationship, Drug , Ethinyl Estradiol/administration & dosage , Female , Femur/drug effects , Injections, Subcutaneous , Male , Mice , Mice, Inbred C57BL , Models, Animal , Phenols/administration & dosage , Pregnancy
15.
J Bone Miner Res ; 37(5): 938-953, 2022 05.
Article in English | MEDLINE | ID: mdl-35195284

ABSTRACT

Osteogenesis imperfecta (OI) is a collagen-related bone disorder characterized by fragile osteopenic bone and muscle weakness. We have previously shown that the soluble activin receptor type IIB decoy (sActRIIB) molecule increases muscle mass and improves bone strength in the mild to moderate G610C mouse model of OI. The sActRIIB molecule binds multiple transforming growth factor-ß (TGF-ß) ligands, including myostatin and activin A. Here, we investigate the musculoskeletal effects of inhibiting activin A alone, myostatin alone, or both myostatin and activin A in wild-type (Wt) and heterozygous G610C (+/G610C) mice using specific monoclonal antibodies. Male and female Wt and +/G610C mice were treated twice weekly with intraperitoneal injections of monoclonal control antibody (Ctrl-Ab, Regn1945), anti-activin A antibody (ActA-Ab, Regn2476), anti-myostatin antibody (Mstn-Ab, Regn647), or both ActA-Ab and Mstn-Ab (Combo, Regn2476, and Regn647) from 5 to 16 weeks of age. Prior to euthanasia, whole body composition, metabolism and muscle force generation assessments were performed. Post euthanasia, hindlimb muscles were evaluated for mass, and femurs were evaluated for changes in microarchitecture and biomechanical strength using micro-computed tomography (µCT) and three-point bend analyses. ActA-Ab treatment minimally impacted the +/G610C musculoskeleton, and was detrimental to bone strength in male +/G610C mice. Mstn-Ab treatment, as previously reported, resulted in substantial increases in hindlimb muscle weights and overall body weights in Wt and male +/G610C mice, but had minimal skeletal impact in +/G610C mice. Conversely, the Combo treatment outperformed ActA-Ab alone or Mstn-Ab alone, consistently increasing hindlimb muscle and body weights regardless of sex or genotype and improving bone microarchitecture and strength in both male and female +/G610C and Wt mice. Combinatorial inhibition of activin A and myostatin more potently increased muscle mass and bone microarchitecture and strength than either antibody alone, recapturing most of the observed benefits of sActRIIB treatment in +/G610C mice. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Osteogenesis Imperfecta , Activins , Animals , Body Weight , Disease Models, Animal , Female , Femur/diagnostic imaging , Femur/metabolism , Male , Mice , Myostatin/genetics , Osteogenesis Imperfecta/diagnostic imaging , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/genetics , X-Ray Microtomography
16.
J Biol Chem ; 285(29): 22276-81, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20463013

ABSTRACT

Type I collagen cleavage is crucial for tissue remodeling, but its homotrimeric isoform is resistant to all collagenases. The homotrimers occur in fetal tissues, fibrosis, and cancer, where their collagenase resistance may play an important physiological role. To understand the mechanism of this resistance, we studied interactions of alpha1(I)(3) homotrimers and normal alpha1(I)(2)alpha2(I) heterotrimers with fibroblast collagenase (MMP-1). Similar MMP-1 binding to the two isoforms and similar cleavage efficiency of unwound alpha1(I) and alpha2(I) chains suggested increased stability and less efficient unwinding of the homotrimer triple helix at the collagenase cleavage site. The unwinding, necessary for placing individual chains inside the catalytic cleft of the enzyme, was the rate-limiting cleavage step for both collagen isoforms. Comparative analysis of the homo- and heterotrimer cleavage kinetics revealed that MMP-1 binding promotes stochastic helix unwinding, resolving the controversy between different models of collagenase action.


Subject(s)
Collagen Type I/chemistry , Collagen Type I/metabolism , Matrix Metalloproteinase 1/metabolism , Protein Multimerization , Animals , Fibrillar Collagens/metabolism , Humans , Kinetics , Mice , Microscopy, Confocal , Models, Biological , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Temperature
17.
Mol Genet Metab ; 104(3): 373-82, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21855382

ABSTRACT

Col1a2-deficient (oim) mice synthesize homotrimeric type I collagen due to nonfunctional proα2(I) collagen chains. Our previous studies revealed a postnatal, progressive type I collagen glomerulopathy in this mouse model, but the mechanism of the sclerotic collagen accumulation within the renal mesangium remains unclear. The recent demonstration of the resistance of homotrimeric type I collagen to cleavage by matrix metalloproteinases (MMPs), led us to investigate the role of MMP-resistance in the glomerulosclerosis of Col1a2-deficient mice. We measured the pre- and post-translational expression of type I collagen and MMPs in glomeruli from heterozygous and homozygous animals. Both the heterotrimeric and homotrimeric isotypes of type I collagen were equally present in whole kidneys of heterozygous mice by immunohistochemistry and biochemical analysis, but the sclerotic glomerular collagen was at least 95-98% homotrimeric, suggesting homotrimeric type I collagen is the pathogenic isotype of type I collagen in glomerular disease. Although steady-state MMP and Col1a1 mRNA levels increased with the disease progression, we found these changes to be a secondary response to the deficient clearance of MMP-resistant homotrimers. Increased renal MMP expression was not sufficient to prevent homotrimeric type I collagen accumulation.


Subject(s)
Collagen Type I/deficiency , Collagen Type I/metabolism , Kidney Glomerulus/pathology , Metalloproteases/metabolism , Osteogenesis Imperfecta/metabolism , Animals , Azo Compounds , Collagen Type I/genetics , DNA Primers/genetics , Histological Techniques , Immunohistochemistry , Kidney Glomerulus/growth & development , Kidney Glomerulus/metabolism , Mice , Mice, Mutant Strains , Osteogenesis Imperfecta/genetics , Reverse Transcriptase Polymerase Chain Reaction
18.
Muscle Nerve ; 43(1): 49-57, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21082689

ABSTRACT

Absence of functional myostatin (MSTN) during fetal development results in adult skeletal muscle hypertrophy and hyperplasia. To more fully characterize MSTN loss in hindlimb muscles, the morphology and contractile function of the soleus, plantaris, gastrocnemius, tibialis anterior, and quadriceps muscles in male and female null (Mstn(-/-)), heterozygous (Mstn(+/-)), and wild-type (Mstn(+/+)) mice were investigated. Muscle weights of Mstn(-/-) mice were greater than those of Mstn(+/+) and Mstn(+/-) mice. Fiber cross-sectional area (CSA) was increased in female Mstn(-/-) soleus and gastrocnemius muscles and in the quadriceps of male Mstn(-/-) mice; peak tetanic force in Mstn(-/-) mice did not parallel the increased muscle weight or CSA. Male Mstn(-/-) muscle exhibited moderate degeneration. Visible pathology in male mice and decreased contractile strength relative to increased muscle weight suggest MSTN loss results in muscle impairment, which is dose-, sex-, and muscle-dependent.


Subject(s)
Hindlimb/physiopathology , Muscle, Skeletal/physiopathology , Myostatin/deficiency , Animals , Disease Models, Animal , Female , Gene Dosage/genetics , Gene Dosage/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Muscle Weakness/genetics , Muscle Weakness/physiopathology , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/physiopathology , Myostatin/genetics , Organ Size/genetics , Organ Size/physiology , Sex Characteristics
19.
Front Genet ; 12: 662908, 2021.
Article in English | MEDLINE | ID: mdl-33854530

ABSTRACT

Current research findings in humans and other mammalian and non-mammalian species support the potent regulatory role of myostatin in the morphology and function of muscle as well as cellular differentiation and metabolism, with real-life implications in agricultural meat production and human disease. Myostatin null mice (mstn-/- ) exhibit skeletal muscle fiber hyperplasia and hypertrophy whereas myostatin deficiency in larger mammals like sheep and pigs engender muscle fiber hyperplasia. Myostatin's impact extends beyond muscles, with alterations in myostatin present in the pathophysiology of myocardial infarctions, inflammation, insulin resistance, diabetes, aging, cancer cachexia, and musculoskeletal disease. In this review, we explore myostatin's role in skeletal integrity and bone cell biology either due to direct biochemical signaling or indirect mechanisms of mechanotransduction. In vitro, myostatin inhibits osteoblast differentiation and stimulates osteoclast activity in a dose-dependent manner. Mice deficient in myostatin also have decreased osteoclast numbers, increased cortical thickness, cortical tissue mineral density in the tibia, and increased vertebral bone mineral density. Further, we explore the implications of these biochemical and biomechanical influences of myostatin signaling in the pathophysiology of human disorders that involve musculoskeletal degeneration. The pharmacological inhibition of myostatin directly or via decoy receptors has revealed improvements in muscle and bone properties in mouse models of osteogenesis imperfecta, osteoporosis, osteoarthritis, Duchenne muscular dystrophy, and diabetes. However, recent disappointing clinical trial outcomes of induced myostatin inhibition in diseases with significant neuromuscular wasting and atrophy reiterate complexity and further need for exploration of the translational application of myostatin inhibition in humans.

20.
J Bone Miner Res ; 36(4): 739-756, 2021 04.
Article in English | MEDLINE | ID: mdl-33249643

ABSTRACT

Osteogenesis imperfecta (OI) is a genetic connective tissue disorder characterized by compromised skeletal integrity, altered microarchitecture, and bone fragility. Current OI treatment strategies focus on bone antiresorptives and surgical intervention with limited effectiveness, and thus identifying alternative therapeutic options remains critical. Muscle is an important stimulus for bone formation. Myostatin, a TGF-ß superfamily myokine, acts through ActRIIB to negatively regulate muscle growth. Recent studies demonstrated the potential benefit of myostatin inhibition with the soluble ActRIIB fusion protein on skeletal properties, although various OI mouse models exhibited variable skeletal responses. The genetic and clinical heterogeneity associated with OI, the lack of specificity of the ActRIIB decoy molecule for myostatin alone, and adverse events in human clinical trials further the need to clarify myostatin's therapeutic potential and role in skeletal integrity. In this study, we determined musculoskeletal outcomes of genetic myostatin deficiency and postnatal pharmacological myostatin inhibition by a monoclonal anti-myostatin antibody (Regn647) in the G610C mouse, a model of mild-moderate type I/IV human OI. In the postnatal study, 5-week-old wild-type and +/G610C male and female littermates were treated with Regn647 or a control antibody for 11 weeks or for 7 weeks followed by a 4-week treatment holiday. Inhibition of myostatin, whether genetically or pharmacologically, increased muscle mass regardless of OI genotype, although to varying degrees. Genetic myostatin deficiency increased hindlimb muscle weights by 6.9% to 34.4%, whereas pharmacological inhibition increased them by 13.5% to 29.6%. Female +/mstn +/G610C (Dbl.Het) mice tended to have similar trabecular and cortical bone parameters as Wt showing reversal of +/G610C characteristics but with minimal effect of +/mstn occurring in male mice. Pharmacologic myostatin inhibition failed to improve skeletal bone properties of male or female +/G610C mice, although skeletal microarchitectural and biomechanical improvements were observed in male wild-type mice. Four-week treatment holiday did not alter skeletal outcomes. © 2020 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Osteogenesis Imperfecta , Animals , Bone and Bones , Collagen Type I , Disease Models, Animal , Female , Male , Mice , Myostatin/genetics , Osteogenesis , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL