Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Epilepsia ; 65(4): 961-973, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38306118

ABSTRACT

OBJECTIVE: Genetic generalized epilepsy (GGE) accounts for approximately 20% of adult epilepsy cases and is considered a disorder of large brain networks, involving both hemispheres. Most studies have not shown any difference in functional whole-brain network topology when compared to healthy controls. Our objective was to examine whether this preserved global network topology could hide local reorganizations that balance out at the global network level. METHODS: We recorded high-density electroencephalograms from 20 patients and 20 controls, and reconstructed the activity of 118 regions. We computed functional connectivity in windows free of interictal epileptiform discharges in broad, delta, theta, alpha, and beta frequency bands, characterized the network topology, and used the Hub Disruption Index (HDI) to quantify the topological reorganization. We examined the generalizability of our results by reproducing a 25-electrode clinical system. RESULTS: Our study did not reveal any significant change in whole-brain network topology among GGE patients. However, the HDI was significantly different between patients and controls in all frequency bands except alpha (p < .01, false discovery rate [FDR] corrected, d < -1), and accompanied by an increase in connectivity in the prefrontal regions and default mode network. This reorganization suggests that regions that are important in transferring the information in controls were less so in patients. Inversely, the crucial regions in patients are less so in controls. These findings were also found in delta and theta frequency bands when using 25 electrodes (p < .001, FDR corrected, d < -1). SIGNIFICANCE: In GGE patients, the overall network topology is similar to that of healthy controls but presents a balanced local topological reorganization. This reorganization causes the prefrontal areas and default mode network to be more integrated and segregated, which may explain executive impairment associated with GGE. Additionally, the reorganization distinguishes patients from controls even when using 25 electrodes, suggesting its potential use as a diagnostic tool.


Subject(s)
Epilepsy, Generalized , Epilepsy , Adult , Humans , Nerve Net/diagnostic imaging , Brain/diagnostic imaging , Electroencephalography/methods , Brain Mapping , Epilepsy, Generalized/genetics , Magnetic Resonance Imaging/methods
2.
Eur J Neurol ; 31(1): e16075, 2024 01.
Article in English | MEDLINE | ID: mdl-37823698

ABSTRACT

BACKGROUND AND PURPOSE: Alcohol withdrawal seizures (AWS) are a well-known complication of chronic alcohol abuse, but there is currently little knowledge of their long-term relapse rate and prognosis. The aims of this study were to identify risk factors for AWS recurrence and to study the overall outcome of patients after AWS. METHODS: In this retrospective single-center study, we included patients who were admitted to the Emergency Department after an AWS between January 1, 2013 and August 10, 2021 and for whom an electroencephalogram (EEG) was requested. AWS relapses up until April 29, 2022 were researched. We compared history, treatment with benzodiazepines or antiseizure medications (ASMs), laboratory, EEG and computed tomography findings between patients with AWS relapse (r-AWS) and patients with no AWS relapse (nr-AWS). RESULTS: A total of 199 patients were enrolled (mean age 53 ± 12 years; 78.9% men). AWS relapses occurred in 11% of patients, after a median time of 470.5 days. Brain computed tomography (n = 182) showed pathological findings in 35.7%. Risk factors for relapses were history of previous AWS (p = 0.013), skull fractures (p = 0.004) at the index AWS, and possibly epileptiform EEG abnormalities (p = 0.07). Benzodiazepines or other ASMs, taken before or after the index event, did not differ between the r-AWS and the nr-AWS group. The mortality rate was 2.9%/year of follow-up, which was 13 times higher compared to the general population. Risk factors for death were history of AWS (p < 0.001) and encephalopathic EEG (p = 0.043). CONCLUSIONS: Delayed AWS relapses occur in 11% of patients and are associated with risk factors (previous AWS >24 h apart, skull fractures, and pathological EEG findings) that also increase the epilepsy risk, that is, predisposition for seizures, if not treated. Future prospective studies are mandatory to determine appropriate long-term diagnostic and therapeutic strategies, in order to reduce the risk of relapse and mortality associated with AWS.


Subject(s)
Alcohol Withdrawal Seizures , Alcoholism , Skull Fractures , Substance Withdrawal Syndrome , Male , Humans , Adult , Middle Aged , Aged , Female , Alcohol Withdrawal Seizures/complications , Alcohol Withdrawal Seizures/chemically induced , Alcohol Withdrawal Seizures/drug therapy , Alcoholism/complications , Substance Withdrawal Syndrome/complications , Substance Withdrawal Syndrome/drug therapy , Retrospective Studies , Prospective Studies , Benzodiazepines/therapeutic use , Recurrence , Skull Fractures/chemically induced , Skull Fractures/complications , Skull Fractures/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL