Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell ; 183(2): 537-548.e12, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33064989

ABSTRACT

Sequential activation of neurons has been observed during various behavioral and cognitive processes, but the underlying circuit mechanisms remain poorly understood. Here, we investigate premotor sequences in HVC (proper name) of the adult zebra finch forebrain that are central to the performance of the temporally precise courtship song. We use high-density silicon probes to measure song-related population activity, and we compare these observations with predictions from a range of network models. Our results support a circuit architecture in which heterogeneous delays between sequentially active neurons shape the spatiotemporal patterns of HVC premotor neuron activity. We gauge the impact of several delay sources, and we find the primary contributor to be slow conduction through axonal collaterals within HVC, which typically adds between 1 and 7.5 ms for each link within the sequence. Thus, local axonal "delay lines" can play an important role in determining the dynamical repertoire of neural circuits.


Subject(s)
Finches/physiology , Prosencephalon/physiology , Vocalization, Animal/physiology , Animal Communication , Animals , Axons , Male , Motor Cortex/physiology , Nerve Net/physiology , Neural Pathways/physiology , Neurons/physiology
2.
J Neurosci ; 32(19): 6688-98, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22573691

ABSTRACT

During early postnatal development, neuronal networks successively produce various forms of spontaneous patterned activity that provide key signals for circuit maturation. Initially, in both rodent hippocampus and neocortex, coordinated activity emerges in the form of synchronous plateau assemblies (SPAs) that are initiated by sparse groups of gap-junction-coupled oscillating neurons. Subsequently, SPAs are replaced by synapse-driven giant depolarizing potentials (GDPs). Whether these sequential changes in mechanistically distinct network activities correlate with modifications in single-cell properties is unknown. To determine this, we studied the morphophysiological fate of single SPA cells as a function of development. We focused on CA3 GABAergic interneurons, which are centrally involved in generating GDPs in the hippocampus. As the network matures, GABAergic neurons are engaged more in GDPs and less in SPAs. Using inducible genetic fate mapping, we show that the individual involvement of GABAergic neurons in SPAs is correlated to their temporal origin. In addition, we demonstrate that the SPA-to-GDP transition is paralleled by a remarkable maturation in the morphophysiological properties of GABAergic neurons. Compared with those involved in GDPs, interneurons participating in SPAs possess immature intrinsic properties, receive synaptic inputs spanning a wide amplitude range, and display large somata as well as membrane protrusions. Thus, a developmental switch in the morphophysiological properties of GABAergic interneurons as they progress from SPAs to GDPs marks the emergence of synapse-driven network oscillations.


Subject(s)
Hippocampus/growth & development , Interneurons/cytology , Interneurons/physiology , Nerve Net/growth & development , Animals , Animals, Newborn , Female , Gene Knock-In Techniques , Hippocampus/cytology , Male , Mice , Mice, Transgenic , Nerve Net/cytology , Organ Culture Techniques
3.
STAR Protoc ; 4(4): 102760, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38041819

ABSTRACT

Two-photon calcium imaging is a powerful technique that has revolutionized our understanding of how neural circuit dynamics supports different behaviors and cognitive processes. However, performing imaging during development remains challenging. Here, we provide a protocol to image CA1 neurons in mouse pups as well as a pipeline of analysis to analyze and share the data. We describe steps for intracerebroventricular injection, cranial window surgery, two-photon calcium imaging, and analysis of imaging data. For complete details on the use and execution of this protocol, please refer to Dard et al.1 and Denis et al.2.


Subject(s)
Calcium , Hippocampus , Mice , Animals , Hippocampus/diagnostic imaging , Neurons , Photons
4.
Neuron ; 111(6): 888-902.e8, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36608692

ABSTRACT

The adult CA1 region of the hippocampus produces coordinated neuronal dynamics with minimal reliance on its extrinsic inputs. By contrast, neonatal CA1 is tightly linked to externally generated sensorimotor activity, but the circuit mechanisms underlying early synchronous activity in CA1 remain unclear. Here, using a combination of in vivo and ex vivo circuit mapping, calcium imaging, and electrophysiological recordings in mouse pups, we show that early dynamics in the ventro-intermediate CA1 are under the mixed influence of entorhinal (EC) and thalamic (VMT) inputs. Both VMT and EC can drive internally generated synchronous events ex vivo. However, movement-related population bursts detected in vivo are exclusively driven by the EC. These differential effects on synchrony reflect the different intrahippocampal targets of these inputs. Hence, cortical and subcortical pathways act differently on the neonatal CA1, implying distinct contributions to the development of the hippocampal microcircuit and related cognitive maps.


Subject(s)
Hippocampus , Neurons , Animals , Mice , Hippocampus/physiology , Neurons/physiology , Thalamus , Entorhinal Cortex/physiology , CA1 Region, Hippocampal/physiology
5.
J Neurosci ; 31(1): 34-45, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21209187

ABSTRACT

GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 µM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.


Subject(s)
Action Potentials/drug effects , Ketone Bodies/metabolism , Neurons/drug effects , Neurons/physiology , Pyruvic Acid/metabolism , gamma-Aminobutyric Acid/pharmacology , 3-Hydroxybutyric Acid/blood , 3-Hydroxybutyric Acid/pharmacology , Action Potentials/physiology , Animals , Animals, Newborn/blood , Bicuculline/pharmacology , Brain/cytology , Brain/growth & development , Bumetanide/pharmacology , Calcium/metabolism , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Female , GABA-A Receptor Antagonists/pharmacology , In Vitro Techniques , Lactic Acid/blood , Male , Patch-Clamp Techniques/methods , Pyruvic Acid/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , Sodium Potassium Chloride Symporter Inhibitors/pharmacology
6.
Elife ; 112022 07 20.
Article in English | MEDLINE | ID: mdl-35856497

ABSTRACT

Early electrophysiological brain oscillations recorded in preterm babies and newborn rodents are initially mostly driven by bottom-up sensorimotor activity and only later can detach from external inputs. This is a hallmark of most developing brain areas, including the hippocampus, which, in the adult brain, functions in integrating external inputs onto internal dynamics. Such developmental disengagement from external inputs is likely a fundamental step for the proper development of cognitive internal models. Despite its importance, the developmental timeline and circuit basis for this disengagement remain unknown. To address this issue, we have investigated the daily evolution of CA1 dynamics and underlying circuits during the first two postnatal weeks of mouse development using two-photon calcium imaging in non-anesthetized pups. We show that the first postnatal week ends with an abrupt shift in the representation of self-motion in CA1. Indeed, most CA1 pyramidal cells switch from activated to inhibited by self-generated movements at the end of the first postnatal week, whereas the majority of GABAergic neurons remain positively modulated throughout this period. This rapid switch occurs within 2 days and follows the rapid anatomical and functional surge of local somatic GABAergic innervation. The observed change in dynamics is consistent with a two-population model undergoing a strengthening of inhibition. We propose that this abrupt developmental transition inaugurates the emergence of internal hippocampal dynamics.


Subject(s)
Hippocampus , Pyramidal Cells , Animals , Animals, Newborn , Hippocampus/physiology , Mice , Pyramidal Cells/physiology
7.
eNeuro ; 7(4)2020.
Article in English | MEDLINE | ID: mdl-32699072

ABSTRACT

Two-photon calcium imaging is now widely used to infer neuronal dynamics from changes in fluorescence of an indicator. However, state-of-the-art computational tools are not optimized for the reliable detection of fluorescence transients from highly synchronous neurons located in densely packed regions such as the CA1 pyramidal layer of the hippocampus during early postnatal stages of development. Indeed, the latest analytical tools often lack proper benchmark measurements. To meet this challenge, we first developed a graphical user interface (GUI) allowing for a precise manual detection of all calcium transients from imaged neurons based on the visualization of the calcium imaging movie. Then, we analyzed movies from mouse pups using a convolutional neural network (CNN) with an attention process and a bidirectional long-short term memory (LSTM) network. This method is able to reach human performance and offers a better F1 score (harmonic mean of sensitivity and precision) than CaImAn to infer neural activity in the developing CA1 without any user intervention. It also enables automatically identifying activity originating from GABAergic neurons. Overall, DeepCINAC offers a simple, fast and flexible open-source toolbox for processing a wide variety of calcium imaging datasets while providing the tools to evaluate its performance.


Subject(s)
Boidae , Deep Learning , Animals , Calcium , Mice , Motion Pictures , Neurons
8.
Neuron ; 98(6): 1133-1140.e3, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29861283

ABSTRACT

A vast array of motor skills can be maintained throughout life. Do these behaviors require stability of individual neuron tuning or can the output of a given circuit remain constant despite fluctuations in single cells? This question is difficult to address due to the variability inherent in most motor actions studied in the laboratory. A notable exception, however, is the courtship song of the adult zebra finch, which is a learned, highly precise motor act mediated by orderly dynamics within premotor neurons of the forebrain. By longitudinally tracking the activity of excitatory projection neurons during singing using two-photon calcium imaging, we find that both the number and the precise timing of song-related spiking events remain nearly identical over the span of several weeks to months. These findings demonstrate that learned, complex behaviors can be stabilized by maintaining precise and invariant tuning at the level of single neurons.


Subject(s)
Courtship , Motor Skills/physiology , Neurons/physiology , Vocalization, Animal/physiology , Animals , Finches , Interneurons , Longitudinal Studies , Male , Motor Cortex/cytology , Motor Cortex/physiology , Optical Imaging , Prosencephalon/cytology , Prosencephalon/physiology
9.
Neuron ; 90(4): 866-76, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27196976

ABSTRACT

The zebra finch brain features a set of clearly defined and hierarchically arranged motor nuclei that are selectively responsible for producing singing behavior. One of these regions, a critical forebrain structure called HVC, contains premotor neurons that are active at precise time points during song production. However, the neural representation of this behavior at a population level remains elusive. We used two-photon microscopy to monitor ensemble activity during singing, integrating across multiple trials by adopting a Bayesian inference approach to more precisely estimate burst timing. Additionally, we examined spiking and motor-related synaptic inputs using intracellular recordings during singing. With both experimental approaches, we find that premotor events do not occur preferentially at the onsets or offsets of song syllables or at specific subsyllabic motor landmarks. These results strongly support the notion that HVC projection neurons collectively exhibit a temporal sequence during singing that is uncoupled from ongoing movements.


Subject(s)
Action Potentials/physiology , Behavior, Animal/physiology , Finches/physiology , Neurons/physiology , Prosencephalon/physiology , Vocalization, Animal/physiology , Animals , Electric Stimulation/methods , Electrophysiology/methods , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL