Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34504005

ABSTRACT

Fungi of the genus Mortierella occur ubiquitously in soils where they play pivotal roles in carbon cycling, xenobiont degradation, and promoting plant growth. These important fungi are, however, threatened by micropredators such as fungivorous nematodes, and yet little is known about their protective tactics. We report that Mortierella verticillata NRRL 6337 harbors a bacterial endosymbiont that efficiently shields its host from nematode attacks with anthelmintic metabolites. Microscopic investigation and 16S ribosomal DNA analysis revealed that a previously overlooked bacterial symbiont belonging to the genus Mycoavidus dwells in M. verticillata hyphae. Metabolic profiling of the wild-type fungus and a symbiont-free strain obtained by antibiotic treatment as well as genome analyses revealed that highly cytotoxic macrolactones (CJ-12,950 and CJ-13,357, syn necroxime C and D), initially thought to be metabolites of the soil-inhabiting fungus, are actually biosynthesized by the endosymbiont. According to comparative genomics, the symbiont belongs to a new species (Candidatus Mycoavidus necroximicus) with 12% of its 2.2 Mb genome dedicated to natural product biosynthesis, including the modular polyketide-nonribosomal peptide synthetase for necroxime assembly. Using Caenorhabditis elegans and the fungivorous nematode Aphelenchus avenae as test strains, we show that necroximes exert highly potent anthelmintic activities. Effective host protection was demonstrated in cocultures of nematodes with symbiotic and chemically complemented aposymbiotic fungal strains. Image analysis and mathematical quantification of nematode movement enabled evaluation of the potency. Our work describes a relevant role for endofungal bacteria in protecting fungi against mycophagous nematodes.


Subject(s)
Anthelmintics/pharmacology , Burkholderiaceae/physiology , Lactones/pharmacology , Metagenome , Mortierella/physiology , Nematoda/drug effects , Symbiosis , Animals , Genomics , Metabolic Networks and Pathways , Mortierella/drug effects , Nematoda/pathogenicity , Peptide Synthases/genetics , Peptide Synthases/metabolism , Phylogeny , Soil Microbiology
2.
J Am Chem Soc ; 145(51): 28216-28223, 2023 12 27.
Article in English | MEDLINE | ID: mdl-38100472

ABSTRACT

The sulfosugar sulfoquinovose (SQ) is produced by photosynthetic plants, algae, and cyanobacteria on a scale of 10 billion tons per annum. Its degradation, which is essential to allow cycling of its constituent carbon and sulfur, involves specialized glycosidases termed sulfoquinovosidases (SQases), which release SQ from sulfolipid glycoconjugates, so SQ can enter catabolism pathways. However, many SQ catabolic gene clusters lack a gene encoding a classical SQase. Here, we report the discovery of a new family of SQases that use an atypical oxidoreductive mechanism involving NAD+ as a catalytic cofactor. Three-dimensional X-ray structures of complexes with SQ and NAD+ provide insight into the catalytic mechanism, which involves transient oxidation at C3. Bioinformatic survey reveals this new family of NAD+-dependent SQases occurs within sulfoglycolytic and sulfolytic gene clusters that lack classical SQases and is distributed widely including within Roseobacter clade bacteria, suggesting an important contribution to marine sulfur cycling.


Subject(s)
Metabolic Networks and Pathways , NAD , NAD/metabolism , Methylglucosides/chemistry , Methylglucosides/metabolism , Plants , Sulfur/metabolism
3.
Angew Chem Int Ed Engl ; 62(42): e202308540, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37650335

ABSTRACT

Rhizonin A and B are hepatotoxic cyclopeptides produced by bacterial endosymbionts (Mycetohabitans endofungorum) of the fungus Rhizopus microsporus. Their toxicity critically depends on the presence of 3-furylalanine (Fua) residues, which also occur in pharmaceutically relevant cyclopeptides of the endolide and bingchamide families. The biosynthesis and incorporation of Fua by non-ribosomal peptide synthetases (NRPS), however, has remained elusive. By genome sequencing and gene inactivation we elucidated the gene cluster responsible for rhizonin biosynthesis. A suite of isotope labeling experiments identified tyrosine and l-DOPA as Fua precursors and provided the first mechanistic insight. Bioinformatics, mutational analysis and heterologous reconstitution identified dioxygenase RhzB as necessary and sufficient for Fua formation. RhzB is a novel type of heme-dependent aromatic oxygenases (HDAO) that enabled the discovery of the bingchamide biosynthesis gene cluster through genome mining.


Subject(s)
Computational Biology , Peptides, Cyclic , Humans , Peptides, Cyclic/chemistry , Multigene Family , Fungi/metabolism , Peptide Synthases/genetics , Peptide Synthases/metabolism
4.
PLoS Pathog ; 16(2): e1008287, 2020 02.
Article in English | MEDLINE | ID: mdl-32032366

ABSTRACT

Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resistance against the new antitubercular nitroimidazole prodrugs pretomanid and delamanid to emerge in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Deazaflavin-dependent nitroreductase (Ddn) is the only identified enzyme within M. tuberculosis that activates these prodrugs, via an F420H2-dependent reaction. We show that the native menaquinone-reductase activity of Ddn is essential for emergence from hypoxia, which suggests that for resistance to spread and pose a threat to human health, the native activity of Ddn must be at least partially retained. We tested 75 unique mutations, including all known sequence polymorphisms identified among ~15,000 sequenced M. tuberculosis genomes. Several mutations abolished pretomanid and delamanid activation in vitro, without causing complete loss of the native activity. We confirmed that a transmissible M. tuberculosis isolate from the hypervirulent Beijing family already possesses one such mutation and is resistant to pretomanid, before being exposed to the drug. Notably, delamanid was still effective against this strain, which is consistent with structural analysis that indicates delamanid and pretomanid bind to Ddn differently. We suggest that the mutations identified in this work be monitored for informed use of delamanid and pretomanid treatment and to slow the emergence of resistance.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins , Drug Resistance, Bacterial , Mutation , Mycobacterium tuberculosis , Nitroimidazoles/pharmacology , Nitroreductases , Oxazoles/pharmacology , Protein Engineering , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Nitroreductases/genetics , Nitroreductases/metabolism , Polymorphism, Genetic
5.
J Biol Chem ; 295(44): 14826-14839, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32826316

ABSTRACT

Enzymes that cleave ATP to activate carboxylic acids play essential roles in primary and secondary metabolism in all domains of life. Class I adenylate-forming enzymes share a conserved structural fold but act on a wide range of substrates to catalyze reactions involved in bioluminescence, nonribosomal peptide biosynthesis, fatty acid activation, and ß-lactone formation. Despite their metabolic importance, the substrates and functions of the vast majority of adenylate-forming enzymes are unknown without tools available to accurately predict them. Given the crucial roles of adenylate-forming enzymes in biosynthesis, this also severely limits our ability to predict natural product structures from biosynthetic gene clusters. Here we used machine learning to predict adenylate-forming enzyme function and substrate specificity from protein sequences. We built a web-based predictive tool and used it to comprehensively map the biochemical diversity of adenylate-forming enzymes across >50,000 candidate biosynthetic gene clusters in bacterial, fungal, and plant genomes. Ancestral phylogenetic reconstruction and sequence similarity networking of enzymes from these clusters suggested divergent evolution of the adenylate-forming superfamily from a core enzyme scaffold most related to contemporary CoA ligases toward more specialized functions including ß-lactone synthetases. Our classifier predicted ß-lactone synthetases in uncharacterized biosynthetic gene clusters conserved in >90 different strains of Nocardia. To test our prediction, we purified a candidate ß-lactone synthetase from Nocardia brasiliensis and reconstituted the biosynthetic pathway in vitro to link the gene cluster to the ß-lactone natural product, nocardiolactone. We anticipate that our machine learning approach will aid in functional classification of enzymes and advance natural product discovery.


Subject(s)
Adenosine Monophosphate/biosynthesis , Lactones/metabolism , Ligases/metabolism , Nocardia/metabolism , Catalysis , Ligases/genetics , Machine Learning , Multigene Family , Nocardia/enzymology , Phylogeny , Reproducibility of Results , Substrate Specificity
6.
Infect Immun ; 88(3)2020 02 20.
Article in English | MEDLINE | ID: mdl-31818964

ABSTRACT

The neglected tropical disease Buruli ulcer (BU) is an infection of subcutaneous tissue with Mycobacterium ulcerans There is no effective vaccine. Here, we assessed an experimental prime-boost vaccine in a low-dose murine tail infection model. We used the enoyl reductase (ER) domain of the M. ulcerans mycolactone polyketide synthases electrostatically coupled with a previously described Toll-like receptor 2 (TLR-2) agonist-based lipopeptide adjuvant, R4Pam2Cys. Mice were vaccinated and then challenged via tail inoculation with 14 to 20 CFU of a bioluminescent strain of M. ulcerans Mice receiving either the experimental ER vaccine or Mycobacterium bovis bacillus Calmette-Guérin (BCG) were equally protected, with both groups faring significantly better than nonvaccinated animals (P < 0.05). To explore potential correlates of protection, a suite of 29 immune parameters were assessed in the mice at the end of the experimental period. Multivariate statistical approaches were used to interrogate the immune response data to develop disease-prognostic models. High levels of interleukin 2 (IL-2) and low gamma interferon (IFN-γ) produced in the spleen best predicted control of infection across all vaccine groups. Univariate logistic regression revealed vaccine-specific profiles of protection. High titers of ER-specific IgG serum antibodies together with IL-2 and IL-4 in the draining lymph node (DLN) were associated with protection induced by the ER vaccine. In contrast, high titers of IL-6, tumor necrosis factor alpha (TNF-α), IFN-γ, and IL-10 in the DLN and low IFN-γ titers in the spleen were associated with protection following BCG vaccination. This study suggests that an effective BU vaccine must induce localized, tissue-specific immune profiles with controlled inflammatory responses at the site of infection.


Subject(s)
Bacterial Vaccines/immunology , Buruli Ulcer , Mycobacterium ulcerans/immunology , Vaccination/methods , Animals , BCG Vaccine/immunology , Buruli Ulcer/immunology , Buruli Ulcer/prevention & control , Interleukins/metabolism , Mice , Multivariate Analysis
7.
Chemistry ; 26(13): 2780-2792, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31667915

ABSTRACT

The nargenicin family of antibiotic macrolides comprise a group of bacterial natural products with a rare ether bridged cis-decalin moiety and a narrow spectrum of activity. Most family members were identified almost four decades ago and were placed on the shelf due to the numbers of broad-spectrum compounds available at the time. However, in light of rising rates of antimicrobial resistance, there has been a renewed interest in the use of narrow-spectrum antimicrobials. Here, we review the history of this family of compounds, including synthetic approaches, and highlight the recently uncovered genetic basis for nargenicin production. Given the renewed pharmaceutical interest in these compounds, we also investigate structure-activity relationships among these molecules, with a view to the future development of members of this unusual antibiotic family.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bridged-Ring Compounds/pharmacology , Lactones/chemistry , Macrolides/pharmacology , Anti-Bacterial Agents/chemistry , Bridged-Ring Compounds/chemistry , Humans , Macrolides/chemistry , Naphthalenes , Structure-Activity Relationship
8.
Chemistry ; 26(58): 13147-13151, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32597507

ABSTRACT

Anaerobic bacteria have only recently been recognized as a source of antibiotics; yet, the metabolic potential of Negativicutes (Gram-negative staining Firmicutes) such as the oak-associated Dendrosporobacter quercicolus has remained unknown. Genome mining of D. quercicolus and phylogenetic analyses revealed a gene cluster for a type II polyketide synthase (PKS) complex that belongs to the most ancestral enzyme systems of this type. Metabolic profiling, NMR analyses, and stable-isotope labeling led to the discovery of a new family of anthraquinone-type polyphenols, the dendrubins, which are diversified by acylation, methylation, and dimerization. Dendrubin A and B were identified as strong antibiotics against a range of clinically relevant, human-pathogenic mycobacteria.


Subject(s)
Polyketide Synthases , Quercus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Firmicutes , Humans , Multigene Family , Phylogeny , Polyketide Synthases/chemistry , Polyketide Synthases/genetics
9.
Angew Chem Int Ed Engl ; 59(20): 7766-7771, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32040253

ABSTRACT

A spider-transmitted fungus (Rhizopus microsporus) that was isolated from necrotic human tissue was found to harbor endofungal bacteria (Burkholderia sp.). Metabolic profiling of the symbionts revealed a complex of cytotoxic agents (necroximes). Their structures were characterized as oxime-substituted benzolactone enamides with a peptidic side chain. The potently cytotoxic necroximes are also formed in symbiosis with the fungal host and could have contributed to the necrosis. Genome sequencing and computational analyses revealed a novel modular PKS/NRPS assembly line equipped with several non-canonical domains. Based on gene-deletion mutants, we propose a biosynthetic model for bacterial benzolactones. We identified specific traits that serve as genetic handles to find related salicylate macrolide pathways (lobatamide, oximidine, apicularen) in various other bacterial genera. Knowledge of the biosynthetic pathway enables biosynthetic engineering and genome-mining approaches.


Subject(s)
Data Mining , Lactones/metabolism , Rhizopus/metabolism , Spiders/microbiology , Symbiosis , Animals , Genomics , Lactones/toxicity , Rhizopus/genetics , Rhizopus/physiology
10.
Angew Chem Int Ed Engl ; 58(37): 13024-13029, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31276269

ABSTRACT

Siderophores are key players in bacteria-host interactions, with the main function to provide soluble iron for their producers. Gramibactin from rhizosphere bacteria expands siderophore function and diversity as it delivers iron to the host plant and features an unusual diazeniumdiolate moiety for iron chelation. By mutational analysis of the grb gene cluster, we identified genes (grbD and grbE) necessary for diazeniumdiolate formation. Genome mining using a GrbD-based network revealed a broad range of orthologous gene clusters in mainly plant-associated Burkholderia/Paraburkholderia species. Two new types of diazeniumdiolate siderophores, megapolibactins and plantaribactin were fully characterized. In vitro assays and in vivo monitoring experiments revealed that the iron chelators also liberate nitric oxide (NO) in plant roots. This finding is important since NO donors are considered as biofertilizers that maintain iron homeostasis and increase overall plant fitness.


Subject(s)
Azo Compounds/metabolism , Burkholderia/metabolism , Nitric Oxide/metabolism , Siderophores/metabolism , Burkholderia/genetics , Genomics , Iron/metabolism , Multigene Family , Plant Roots/microbiology , Plants/microbiology , Siderophores/genetics
11.
Angew Chem Int Ed Engl ; 58(12): 3996-4001, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30677204

ABSTRACT

The nargenicin family of antibiotics are macrolides containing a rare ether-bridged cis-decalin motif. Several of these compounds are highly active against multi-drug resistant organisms. Despite the identification of the first members of this family almost 40 years ago, the genetic basis for the production of these molecules and the enzyme responsible for formation of the oxa bridge, remain unknown. Here, the 85 kb nargenicin biosynthetic gene cluster was identified from a human pathogenic Nocardia arthritidis isolate and this locus is solely responsible for nargenicin production. Further investigation of this locus revealed a putative iron-α-ketoglutarate-dependent dioxygenase, which was found to be responsible for the formation of the ether bridge from the newly identified deoxygenated precursor, 8,13-deoxynargenicin. Uncovering the nargenicin biosynthetic locus provides a molecular basis for the rational bioengineering of these interesting antibiotic macrolides.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Ethers/chemistry , Macrolides/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Dioxygenases/metabolism , Escherichia coli/drug effects , Lactones/chemistry , Lactones/metabolism , Lactones/pharmacology , Macrolides/chemistry , Macrolides/pharmacology , Microbial Sensitivity Tests , Multigene Family , Nocardia/genetics , Staphylococcus aureus/drug effects
12.
Appl Environ Microbiol ; 83(21)2017 11 01.
Article in English | MEDLINE | ID: mdl-28821546

ABSTRACT

Public health agencies are increasingly relying on genomics during Legionnaires' disease investigations. However, the causative bacterium (Legionella pneumophila) has an unusual population structure, with extreme temporal and spatial genome sequence conservation. Furthermore, Legionnaires' disease outbreaks can be caused by multiple L. pneumophila genotypes in a single source. These factors can confound cluster identification using standard phylogenomic methods. Here, we show that a statistical learning approach based on L. pneumophila core genome single nucleotide polymorphism (SNP) comparisons eliminates ambiguity for defining outbreak clusters and accurately predicts exposure sources for clinical cases. We illustrate the performance of our method by genome comparisons of 234 L. pneumophila isolates obtained from patients and cooling towers in Melbourne, Australia, between 1994 and 2014. This collection included one of the largest reported Legionnaires' disease outbreaks, which involved 125 cases at an aquarium. Using only sequence data from L. pneumophila cooling tower isolates and including all core genome variation, we built a multivariate model using discriminant analysis of principal components (DAPC) to find cooling tower-specific genomic signatures and then used it to predict the origin of clinical isolates. Model assignments were 93% congruent with epidemiological data, including the aquarium Legionnaires' disease outbreak and three other unrelated outbreak investigations. We applied the same approach to a recently described investigation of Legionnaires' disease within a UK hospital and observed a model predictive ability of 86%. We have developed a promising means to breach L. pneumophila genetic diversity extremes and provide objective source attribution data for outbreak investigations.IMPORTANCE Microbial outbreak investigations are moving to a paradigm where whole-genome sequencing and phylogenetic trees are used to support epidemiological investigations. It is critical that outbreak source predictions are accurate, particularly for pathogens, like Legionella pneumophila, which can spread widely and rapidly via cooling system aerosols, causing Legionnaires' disease. Here, by studying hundreds of Legionella pneumophila genomes collected over 21 years around a major Australian city, we uncovered limitations with the phylogenetic approach that could lead to a misidentification of outbreak sources. We implement instead a statistical learning technique that eliminates the ambiguity of inferring disease transmission from phylogenies. Our approach takes geolocation information and core genome variation from environmental L. pneumophila isolates to build statistical models that predict with high confidence the environmental source of clinical L. pneumophila during disease outbreaks. We show the versatility of the technique by applying it to unrelated Legionnaires' disease outbreaks in Australia and the UK.


Subject(s)
Legionella pneumophila/isolation & purification , Legionnaires' Disease/microbiology , Adult , Australia/epidemiology , Disease Outbreaks , Female , Fresh Water/microbiology , Genotype , Humans , Legionella pneumophila/classification , Legionella pneumophila/genetics , Legionnaires' Disease/epidemiology , Male , Phylogeny , Water Supply
13.
Angew Chem Int Ed Engl ; 56(18): 4945-4949, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28371116

ABSTRACT

The natural products isatropolone A-C (1-3) were reisolated from Streptomyces Gö66, with 1 and 3 showing potent activity against Leishmania donovani. They contain a rare tropolone ring derived from a type II polyketide biosynthesis pathway. Their biosynthesis was elucidated by labeling experiments, analysis of the biosynthesis gene cluster, its partial heterologous expression, and structural characterization of various intermediates. Owing to their 1,5-diketone moiety, they can react with ammonia, amines, lysine, and lysine-containing peptides and proteins, which results in the formation of a covalent bond and subsequent pyridine ring formation. Their fluorescence properties change upon amine binding, enabling the simple visualization of reacted amines including proteins.


Subject(s)
Biological Products/metabolism , Biosynthetic Pathways , Fluorescent Dyes/metabolism , Streptomyces/metabolism , Tropolone/metabolism , Amines/metabolism , Animals , Antiparasitic Agents/chemistry , Antiparasitic Agents/metabolism , Antiparasitic Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Cell Line , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Humans , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Multigene Family , Rats , Streptomyces/chemistry , Streptomyces/enzymology , Streptomyces/genetics , Tropolone/chemistry , Tropolone/pharmacology
14.
BMC Genomics ; 15: 983, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25407095

ABSTRACT

BACKGROUND: Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a diverse group of biologically active bacterial molecules. Due to the conserved genomic arrangement of many of the genes involved in their synthesis, these secondary metabolite biosynthetic pathways can be predicted from genome sequence data. To date, however, despite the myriad of sequenced genomes covering many branches of the bacterial phylogenetic tree, such an analysis for a broader group of bacteria like anaerobes has not been attempted. RESULTS: We investigated a collection of 211 complete and published genomes, focusing on anaerobic bacteria, whose potential to encode RiPPs is relatively unknown. We showed that the presence of RiPP-genes is widespread among anaerobic representatives of the phyla Actinobacteria, Proteobacteria and Firmicutes and that, collectively, anaerobes possess the ability to synthesize a broad variety of different RiPP classes. More than 25% of anaerobes are capable of producing RiPPs either alone or in conjunction with other secondary metabolites, such as polyketides or non-ribosomal peptides. CONCLUSION: Amongst the analyzed genomes, several gene clusters encode uncharacterized RiPPs, whilst others show similarity with known RiPPs. These include a number of potential class II lanthipeptides; head-to-tail cyclized peptides and lactococcin 972-like RiPP. This study presents further evidence in support of anaerobic bacteria as an untapped natural products reservoir.


Subject(s)
Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/metabolism , Data Mining , Genome, Bacterial , Peptides/metabolism , Protein Processing, Post-Translational , Ribosomes/metabolism , Amino Acid Sequence , Anaerobiosis , Hydro-Lyases/metabolism , Molecular Sequence Data , Multigene Family , Peptides/chemistry , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Phylogeny
15.
Int J Med Microbiol ; 304(1): 14-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24120363

ABSTRACT

The current crop of antibiotics in clinical use are either natural products or their derivatives. However, the rise of a multitude of different antibiotic resistant human pathogens has meant that new antibiotics are urgently needed. Unfortunately, the search for new antibiotics from traditional bacterial sources often results in a high rediscovery rate of known compounds and a low chance of identifying truly novel chemical entities. To overcome this, previously unexplored (or under investigated) bacterial sources are being tapped for their potential to produce novel compounds with new activities. Here, we review a number of antibiotic compounds identified from bacteria of the genera Burkholderia, Clostridium, Lysobacter, Pantoea and Xenorhabdus and describe the potential of organisms and their associated metabolites in future drug discovery efforts.


Subject(s)
Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Biological Products/isolation & purification , Biological Products/pharmacology , Burkholderia/chemistry , Clostridium/chemistry , Gammaproteobacteria/chemistry , Anti-Infective Agents/therapeutic use , Biological Products/therapeutic use , Burkholderia/genetics , Clostridium/genetics , Drug Discovery/trends , Gammaproteobacteria/genetics
16.
PLoS Negl Trop Dis ; 18(5): e0011979, 2024 May.
Article in English | MEDLINE | ID: mdl-38701090

ABSTRACT

Critical scientific questions remain regarding infection with Mycobacterium ulcerans, the organism responsible for the neglected tropical disease, Buruli ulcer (BU). A controlled human infection model has the potential to accelerate our knowledge of the immunological correlates of disease, to test prophylactic interventions and novel therapeutics. Here we present microbiological evidence supporting M. ulcerans JKD8049 as a suitable human challenge strain. This non-genetically modified Australian isolate is susceptible to clinically relevant antibiotics, can be cultured in animal-free and surfactant-free media, can be enumerated for precise dosing, and has stable viability following cryopreservation. Infectious challenge of humans with JKD8049 is anticipated to imitate natural infection, as M. ulcerans JKD8049 is genetically stable following in vitro passage and produces the key virulence factor, mycolactone. Also reported are considerations for the manufacture, storage, and administration of M. ulcerans JKD8049 for controlled human infection.


Subject(s)
Buruli Ulcer , Mycobacterium ulcerans , Mycobacterium ulcerans/genetics , Buruli Ulcer/microbiology , Buruli Ulcer/immunology , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Australia
17.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38691425

ABSTRACT

The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.


Subject(s)
Rhizopus , Symbiosis , Rhizopus/metabolism , Rhizopus/genetics , Spores, Fungal/genetics , Spores, Fungal/metabolism , Spores, Fungal/growth & development , Flavins/metabolism , CRISPR-Cas Systems , Riboflavin/metabolism
18.
Nat Prod Rep ; 30(3): 392-428, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23263685

ABSTRACT

A total of 211 complete and published genomes from anaerobic bacteria are analysed for the presence of secondary metabolite biosynthesis gene clusters, in particular those tentatively coding for polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). We investigate the distribution of these gene clusters according to bacterial phylogeny and, if known, correlate these to the type of metabolic pathways they encode. The potential of anaerobes as secondary metabolite producers is highlighted.


Subject(s)
Bacteria , Biological Products , Metabolome , Bacteria/chemistry , Bacteria/genetics , Humans , Molecular Structure , Peptide Synthases/genetics , Peptide Synthases/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism
19.
Access Microbiol ; 5(5)2023.
Article in English | MEDLINE | ID: mdl-37323942

ABSTRACT

As a proven source of potent and selective antimicrobials, Xenorhabdus bacteria are important to an age plagued with difficult-to-treat microbial infections. Yet, only 27 species have been described to date. In this study, a novel Xenorhabdus species was discovered through genomic studies on three isolates from Kenyan soils. Soils in Western Kenya were surveyed for steinernematids and Steinernema isolates VH1 and BG5 were recovered from red volcanic loam soils from cultivated land in Vihiga and clay soils from riverine land in Bungoma respectively. From the two nematode isolates, Xenorhabdus sp. BG5 and Xenorhabdus sp. VH1 were isolated. The genomes of these two, plus that of X. griffiniae XN45 - this was previously isolated from Steinernema sp. scarpo that also originated from Kenyan soils - were sequenced and assembled. Nascent genome assemblies of the three isolates were of good quality with over 70 % of their proteome having known functions. These three isolates formed the X. griffiniae clade in a phylogenomic reconstruction of the genus. Their species were delineated using three overall genome relatedness indices: an unnamed species of the genus, Xenorhabdus sp. BG5, X. griffiniae VH1 and X. griffiniae XN45. A pangenome analysis of this clade revealed that over 70 % of species-specific genes encoded unknown functions. Transposases were linked to genomic islands in Xenorhabdus sp. BG5. Thus, overall genome-related indices sufficiently delineated species of two new Xenorhabdus isolates from Kenya, both of which were closely related to X. griffiniae . The functions encoded by most species-specific genes in the X. griffiniae clade remain unknown.

20.
Microbiome ; 11(1): 185, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37596630

ABSTRACT

BACKGROUND: Reef-building corals are acutely threatened by ocean warming, calling for active interventions to reduce coral bleaching and mortality. Corals associate with a wide diversity of bacteria which can influence coral health, but knowledge of specific functions that may be beneficial for corals under thermal stress is scant. Under the oxidative stress theory of coral bleaching, bacteria that scavenge reactive oxygen (ROS) or nitrogen species (RNS) are expected to enhance coral thermal resilience. Further, bacterial carbon export might substitute the carbon supply from algal photosymbionts, enhance thermal resilience and facilitate bleaching recovery. To identify probiotic bacterial candidates, we sequenced the genomes of 82 pure-cultured bacteria that were isolated from the emerging coral model Galaxea fascicularis. RESULTS: Genomic analyses showed bacterial isolates were affiliated with 37 genera. Isolates such as Ruegeria, Muricauda and Roseovarius were found to encode genes for the synthesis of the antioxidants mannitol, glutathione, dimethylsulfide, dimethylsulfoniopropionate, zeaxanthin and/or ß-carotene. Genes involved in RNS-scavenging were found in many G. fascicularis-associated bacteria, which represents a novel finding for several genera (including Pseudophaeobacter). Transporters that are suggested to export carbon (semiSWEET) were detected in seven isolates, including Pseudovibrio and Roseibium. Further, a range of bacterial strains, including strains of Roseibium and Roseovarius, revealed genomic features that may enhance colonisation and association of bacteria with the coral host, such as secretion systems and eukaryote-like repeat proteins. CONCLUSIONS: Our work provides an in-depth genomic analysis of the functional potential of G. fascicularis-associated bacteria and identifies novel combinations of traits that may enhance the coral's ability to withstand coral bleaching. Identifying and characterising bacteria that are beneficial for corals is critical for the development of effective probiotics that boost coral climate resilience. Video Abstract.


Subject(s)
Anthozoa , Animals , Coral Bleaching , Genomics , Bacteria/genetics , Carbon
SELECTION OF CITATIONS
SEARCH DETAIL