Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Environ Sci Technol ; 57(33): 12388-12397, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37561589

ABSTRACT

Liquid elemental mercury (Hg0L) pollution can remain in soils for decades and, over time, will undergo corrosion, a process in which the droplet surface oxidizes soil constituents to form more reactive phases, such as mercury oxide (HgO). While these reactive coatings may enhance Hg migration in the subsurface, little is known about the transformation potential of corroded Hg0L in the presence of reduced inorganic sulfur species to form sparingly soluble HgS particles, a process that enables the long-term sequestration of mercury in soils and generally reduces its mobility and bioavailability. In this study, we investigated the dissolution of corroded Hg0L in the presence of sulfide by quantifying rates of aqueous Hg release from corroded Hg0L droplets under different sulfide concentrations (expressed as the S:Hg molar ratio). For droplets corroded in ambient air, no differences in soluble Hg release were observed among all sulfide exposure levels (S:Hg mole ratios ranging from 10-4 to 10). However, for droplets oxidized in the presence of a more reactive oxidant (hydrogen peroxide, H2O2), we observed a 10- to 25-fold increase in dissolved Hg when the oxidized droplets were exposed to low sulfide concentrations (S:Hg ratios from 10-4 to 10-1) relative to droplets exposed to high sulfide concentrations. These results suggest two critical factors that dictate the release of soluble Hg from Hg0L in the presence of sulfide: the extent of surface corrosion of the Hg0L droplet and sufficient sulfide concentration for the formation of HgS solids. The mobilization of Hg0L in porous media, therefore, largely depends on aging conditions in the subsurface and chemical reactivity at the Hg0L droplet interface.


Subject(s)
Mercury , Mercury/analysis , Solubility , Hydrogen Peroxide , Sulfides , Soil
2.
Environ Sci Technol ; 57(14): 5655-5665, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36976621

ABSTRACT

Climate warming causes permafrost thaw predicted to increase toxic methylmercury (MeHg) and greenhouse gas [i.e., methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)] formation. A microcosm incubation study with Arctic tundra soil over 145 days demonstrates that N2O at 0.1 and 1 mM markedly inhibited microbial MeHg formation, methanogenesis, and sulfate reduction, while it slightly promoted CO2 production. Microbial community analyses indicate that N2O decreased the relative abundances of methanogenic archaea and microbial clades implicated in sulfate reduction and MeHg formation. Following depletion of N2O, both MeHg formation and sulfate reduction rapidly resumed, whereas CH4 production remained low, suggesting that N2O affected susceptible microbial guilds differently. MeHg formation strongly coincided with sulfate reduction, supporting prior reports linking sulfate-reducing bacteria to MeHg formation in the Arctic soil. This research highlights complex biogeochemical interactions in governing MeHg and CH4 formation and lays the foundation for future mechanistic studies for improved predictive understanding of MeHg and greenhouse gas fluxes from thawing permafrost ecosystems.


Subject(s)
Greenhouse Gases , Methylmercury Compounds , Soil , Methylmercury Compounds/analysis , Ecosystem , Greenhouse Gases/analysis , Nitrous Oxide/analysis , Carbon Dioxide/analysis , Tundra , Methane/analysis , Sulfates/analysis , Arctic Regions
3.
Phys Chem Chem Phys ; 23(30): 16165-16179, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34297029

ABSTRACT

Understanding the corrosion behavior of glasses in near-neutral environments is crucial for many technologies including glasses for regenerative medicine and nuclear waste immobilization. To maintain consistent pH values throughout experiments in the pH = 7 to 9 regime, buffer solutions containing tris(hydroxymethyl)aminomethane ("Tris", or sometimes called THAM) are recommended in ISO standards 10993-14 and 23317 for evaluating biomaterial degradation and utilized throughout glass dissolution behavior literature-a key advantage being the absence of dissolved alkali/alkaline earth cations (i.e. Na+ or Ca2+) that can convolute experimental results due to solution feedback effects. Although Tris is effective at maintaining the solution pH, it has presented concerns due to the adverse artificial effects it produces while studying glass corrosion, especially in borosilicate glasses. Therefore, many open questions still remain on the topic of borosilicate glass interaction with Tris-based solutions. We have approached this topic by studying the dissolution behavior of a sodium borosilicate glass in a wide range of Tris-based solutions at 65 °C with varied acid identity (Tris-HCl vs. Tris-HNO3), buffer concentration (0.01 M to 0.5 M), and pH (7-9). The results have been discussed in reference to previous studies on this topic and the following conclusions have been made: (i) acid identity in Tris-based solutions does not exhibit a significant impact on the dissolution behavior of borosilicate glasses, (ii) ∼0.1 M Tris-based solutions are ideal for maintaining solution pH in the absence of obvious undesirable solution chemistry effects, and (iii) Tris-boron complexes can form in solution as a result of glass dissolution processes. The complex formation, however, exhibits a distinct temperature-dependence, and requires further study to uncover the precise mechanisms by which Tris-based solutions impact borosilicate glass dissolution behavior.

4.
Environ Sci Technol ; 54(23): 15534-15545, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33196184

ABSTRACT

Mercury (Hg) isotope exchange is a common process in biogeochemical transformations of Hg in the environment, but it is unclear whether and at what rates dissolved elemental Hg(0)aq may exchange with divalent Hg(II) bound to various organic and inorganic ligands in water. Using enriched stable isotopes, we investigated the rates and dynamics of isotope exchange between 202Hg(0)aq and 201Hg(II) bound to organic and inorganic ligands with varying chemical structures and binding affinities. Time-dependent exchange reactions were followed by isotope compositional changes using both inductively coupled plasma mass spectrometry and Zeeman cold vapor atomic absorption spectrometry. Rapid, spontaneous isotope exchange (<1 h) was observed between 202Hg(0)aq and 201Hg(II) bound to chloride (Cl-), ethylenediaminetetraacetate (EDTA), and thiols, such as cysteine (CYS), glutathione (GSH), and 2,3-dimercaptopropanesulfonic acid (DMPS) at a thiol ligand-to-Hg(II) molar ratio of 1:1. Without external reductants or oxidants, the exchange resulted in transfer of two electrons and redistribution of Hg isotopes bound to the ligand but no net changes of chemical species in the system. However, an increase in the ligand-to-Hg(II) ratio decreased the exchange rates due to the formation of 2:1 or higher thiol:Hg(II) chelated complexes, but had no effects on exchange rates with 201Hg(II) bound to EDTA or Cl-. The exchange between 202Hg(0)aq and 201Hg(II) bound to dissolved organic matter (DOM) showed an initially rapid followed by a slower exchange rate, likely resulting from Hg(II) complexation with both low- and high-affinity binding functional groups on DOM (e.g., carboxylates vs bidentate thiolates). These results demonstrate that Hg(0)aq readily exchanges with Hg(II) bound to various ligands and highlight the importance of considering exchange reactions in experimental enriched Hg isotope tracer studies or in natural abundance Hg isotope studies in environmental matrices.


Subject(s)
Mercury , Isotopes , Ligands , Mercury Isotopes , Sulfhydryl Compounds
5.
Phys Chem Chem Phys ; 22(4): 1881-1896, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31912064

ABSTRACT

The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the corrosion of silicate-based glass chemistries over a broad composition space in the acidic pH regime is essential for glass packaging and touch screen electronic display industries. A thorough literature review on this topic reveals only a handful of studies that discuss acid corrosion of silicate glasses and their derivatives-these include only a narrow set of silicate-based glass chemistries. Although the current literature successfully explains the dissolution kinetics of glasses based upon classically understood aqueous corrosion mechanisms, more recent advancements in atomic-scale characterization techniques, have enabled a better understanding of reactions taking place directly at the pristine glass-fluid interface which has facilitated the development of a unifying model describing corrosion behavior of silicate glasses. Based on the corrosion mechanisms described and the questions raised in preceding literature, the present study focuses on understanding the corrosion mechanisms governing metaluminous (Na/Al = 1) sodium aluminoborosilicate glasses in acidic environments across a wide composition-space (ranging from SiO2-rich to B2O3-rich compositions), with particular emphasis on understanding the reactions taking place near the glass-fluid interface. Using state-of-the-art characterization techniques including nuclear magnetic resonance (NMR) spectroscopy, Rutherford backscattering, X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA), it has been shown that stepwise B2O3 substitutions into nepheline (NaAlSiO4) glass, although causing non-linear changes in glass structure network structural features, leads to strikingly linear increases in the forward dissolution rate at pH = 2. While the glasses undergo congruent dissolution in the forward rate regime, the residual rate regime displays evidence of preferential extraction near the glass surface (i.e., enrichment in aluminum content upon corrosion through AlO4→ Al(OH)3 evolution) implying that dissolution-re-precipitation processes may occur at the glass-fluid interface in both B2O3-rich and SiO2-rich glass compositions-albeit with vastly dissimilar reaction kinetics.

6.
Appl Environ Microbiol ; 85(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31076430

ABSTRACT

Soils contain a tangle of minerals, water, nutrients, gases, plant roots, decaying organic matter, and microorganisms which work together to cycle nutrients and support terrestrial plant growth. Most soil microorganisms live in periodically interconnected communities closely associated with soil aggregates, i.e., small (<2 mm), strongly bound clusters of minerals and organic carbon that persist through mechanical disruptions and wetting events. Their spatial structure is important for biogeochemical cycling, and we cannot reliably predict soil biological activities and variability by studying bulk soils alone. To fully understand the biogeochemical processes at work in soils, it is necessary to understand the micrometer-scale interactions that occur between soil particles and their microbial inhabitants. Here, we review the current state of knowledge regarding soil aggregate microbial communities and identify areas of opportunity to study soil ecosystems at a scale relevant to individual cells. We present a framework for understanding aggregate communities as "microbial villages" that are periodically connected through wetting events, allowing for the transfer of genetic material, metabolites, and viruses. We describe both top-down (whole community) and bottom-up (reductionist) strategies for studying these communities. Understanding this requires combining "model system" approaches (e.g., developing mock community artificial aggregates), field observations of natural communities, and broader study of community interactions to include understudied community members, like viruses. Initial studies suggest that aggregate-based approaches are a critical next step for developing a predictive understanding of how geochemical and community interactions govern microbial community structure and nutrient cycling in soil.


Subject(s)
Microbiota/physiology , Soil Microbiology , Ecosystem , Soil
7.
Environ Sci Technol ; 53(5): 2426-2433, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30702880

ABSTRACT

In natural freshwater and sediments, mercuric mercury (Hg(II)) is largely associated with particulate minerals and organics, but it remains unclear under what conditions particulates may become a sink or a source for Hg(II) and whether the particulate-bound Hg(II) is bioavailable for microbial uptake and methylation. In this study, we investigated Hg(II) sorption-desorption characteristics on three organo-coated hematite particulates and a Hg-contaminated natural sediment and evaluated the potential of particulate-bound Hg(II) for microbial methylation. Mercury rapidly sorbed onto particulates, especially the cysteine-coated hematite and sediment, with little desorption observed (0.1-4%). However, the presence of Hg-binding ligands, such as low-molecular-weight thiols and humic acids, resulted in up to 60% of Hg(II) desorption from the Hg-laden hematite particulates but <6% from the sediment. Importantly, the particulate-bound Hg(II) was bioavailable for uptake and methylation by a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under anaerobic incubations, and the methylation rate was 4-10 times higher than the desorption rate of Hg(II). These observations suggest direct contacts and interactions between bacterial cells and the particulate-bound Hg(II), resulting in rapid exchange or uptake of Hg(II) by the bacteria. The results highlight the importance of Hg(II) partitioning at particulate-water interfaces and the role of particulates as a significant source of Hg(II) for methylation in the environment.


Subject(s)
Desulfovibrio desulfuricans , Mercury , Methylmercury Compounds , Methylation , Minerals
8.
Environ Sci Technol ; 53(11): 6264-6272, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31075193

ABSTRACT

Recent studies have identified HgcAB proteins as being responsible for mercury [Hg(II)] methylation by certain anaerobic microorganisms. However, it remains controversial whether microbes take up Hg(II) passively or actively. Here, we examine the dynamics of concurrent Hg(II) adsorption, uptake, and methylation by both viable and inactivated cells (heat-killed or starved) or spheroplasts of the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 in laboratory incubations. We show that, without addition of thiols, >60% of the added Hg(II) (25 nM) was taken up passively in 48 h by live and inactivated cells and also by cells treated with the proton gradient uncoupler, carbonylcyanide-3-chlorophenylhydrazone (CCCP). Inactivation abolished Hg(II) methylation, but the cells continued taking up Hg(II), likely through competitive binding or ligand exchange of Hg(II) by intracellular proteins or thiol-containing cellular components. Similarly, treatment with CCCP impaired the ability of spheroplasts to methylate Hg(II) but did not stop Hg(II) uptake. Spheroplasts showed a greater capacity to adsorb Hg(II) than whole cells, and the level of cytoplasmic membrane-bound Hg(II) correlated well with MeHg production, as Hg(II) methylation is associated with cytoplasmic HgcAB. Our results indicate that active metabolism is not required for cellular Hg(II) uptake, thereby providing an improved understanding of Hg(II) bioavailability for methylation.


Subject(s)
Desulfovibrio desulfuricans , Mercury , Methylmercury Compounds , Methylation , Sulfhydryl Compounds
9.
Proteomics ; 18(17): e1700479, 2018 09.
Article in English | MEDLINE | ID: mdl-30009483

ABSTRACT

Recent studies of microbial mercury (Hg) methylation revealed a key gene pair, hgcAB, which is essential for methylmercury (MeHg) production in the environment. However, many aspects of the mechanism and biological processes underlying Hg methylation, as well as any additional physiological functions of the hgcAB genes, remain unknown. Here, quantitative proteomics are used to identify changes in potential functional processes related to hgcAB gene deletion in the Hg-methylating bacterium Desulfovibrio desulfuricans ND132. Global proteomics analyses indicate that the wild type and ΔhgcAB strains are similar with respect to the whole proteome and the identified number of proteins, but differ significantly in the abundance of specific proteins. The authors observe changes in the abundance of proteins related to the glycolysis pathway and one-carbon metabolism, suggesting that the hgcAB gene pair is linked to carbon metabolism. Unexpectedly, the authors find that the deletion of hgcAB significantly impacts a range of metal transport proteins, specifically membrane efflux pumps such as those associated with heavy metal copper (Cu) export, leading to decreased Cu uptake in the ΔhgcAB mutant. This observation indicates possible linkages between this set of proteins and metal homeostasis in the cell. However, hgcAB gene expression is not induced by Hg, as evidenced by similarly low abundance of HgcA and HgcB proteins in the absence or presence of Hg (500 nm). Taken together, these results suggest an apparent link between HgcAB, one-carbon metabolism, and metal homeostasis, thereby providing insights for further exploration of biochemical mechanisms and biological functions of microbial Hg methylation.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Desulfovibrio desulfuricans/metabolism , Gene Deletion , Methylmercury Compounds/chemistry , Proteome/analysis , Proteome/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Phenomena , Desulfovibrio desulfuricans/genetics , Desulfovibrio desulfuricans/growth & development , Metabolic Networks and Pathways , Methylation
10.
Environ Sci Technol ; 52(3): 1139-1149, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29258315

ABSTRACT

The dissolution of metal sulfides, such as ZnS, is an important biogeochemical process affecting fate and transport of trace metals in the environment. However, current studies of in situ dissolution of metal sulfides and the effects of structural defects on dissolution are lacking. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, we have examined biogenic ZnS nanoparticles produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium in the presence or absence of silver (Ag), and abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H2S-rich gas or Na2S solution. The size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were examined using high-resolution transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ∼10 nm) than the abiogenic ones (i.e., ∼3-5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ∼3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell TEM (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles (γ = 0.799 J/m2) have a significantly higher surface energy than the abiogenic ZnS nanoparticles (γ = 0.277 J/m2). Larger defect-bearing biogenic ZnS nanoparticles were thus more reactive than the smaller quantum-dot-sized ZnS nanoparticles. These findings provide new insight into the factors that affect the dissolution of metal sulfide nanoparticles in relevant natural and engineered scenarios, and have important implications for tracking the fate and transport of sulfide nanoparticles and associated metal ions in the environment. Moreover, our study exemplified the use of an in situ method (i.e., LCTEM) to investigate nanoparticle behavior (e.g., dissolution) in aqueous solutions.


Subject(s)
Nanoparticles , Zinc Compounds , Particle Size , Silver , Sulfides
11.
Appl Microbiol Biotechnol ; 102(19): 8329-8339, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30078139

ABSTRACT

Sequential NanoFermentation (SNF) is a novel process which entails sparging microbially produced gas containing H2S from a primary reactor through a concentrated metal-acetate solution contained in a secondary reactor, thereby precipitating metallic sulfide nanoparticles (e.g., ZnS, CuS, or SnS). SNF holds an advantage over single reactor nanoparticle synthesis strategies, because it avoids exposing the microorganisms to high concentrations of toxic metal and sulfide ions. Also, by segregating the nanoparticle products from biological materials, SNF avoids coating nanoparticles with bioproducts that alter their desired properties. Herein, we report the properties of ZnS nanoparticles formed from SNF as compared with ones produced directly in a primary reactor (i.e., conventional NanoFermentation, or "CNF"), commercially available ZnS, and ZnS chemically synthesized by bubbling H2S gas through a Zn-acetate solution. The ZnS nanoparticles produced by SNF provided improved optical properties due to their smaller crystallite size, smaller overall particle sizes, reduced biotic surface coatings, and reduced structural defects. SNF still maintained the advantages of NanoFermentation technology over chemical synthesis including scalability, reproducibility, and lower hazardous waste burden.


Subject(s)
Fermentation/physiology , Metal Nanoparticles/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Gases/chemistry , Particle Size , Reproducibility of Results
12.
Environ Sci Technol ; 51(18): 10468-10475, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28806071

ABSTRACT

Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. In this study, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under nonsulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hg via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. These strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting microbial Hg uptake and methylation. Additionally, DOM and glutathione greatly decreased Hg sorption by G. sulfurreducens PCA but showed little effect on D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. These observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.


Subject(s)
Desulfovibrio desulfuricans , Geobacter , Mercury/chemistry , Methylmercury Compounds/chemistry , Methylation
13.
Environ Sci Technol ; 51(2): 997-1006, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28026187

ABSTRACT

Treatment and immobilization of technetium-99 (99Tc) contained in reprocessed nuclear waste and present in contaminated subsurface systems represents a major environmental challenge. One potential approach to managing this highly mobile and long-lived radionuclide is immobilization into micro- and meso-porous crystalline solids, specifically sodalite. We synthesized and characterized the structure of perrhenate sodalite, Na8[AlSiO4]6(ReO4)2, and the structure of a mixed guest perrhenate/pertechnetate sodalite, Na8[AlSiO4]6(ReO4)2-x(TcO4)x. Perrhenate was used as a chemical analogue for pertechnetate. Bulk analyses of each solid confirm a cubic sodalite-type structure (P4̅3n, No. 218 space group) with rhenium and technetium in the 7+ oxidation state. High-resolution nanometer scale characterization measurements provide first-of-a-kind evidence that the ReO4- anions are distributed in a periodic array in the sample, nanoscale clustering is not observed, and the ReO4- anion occupies the center of the sodalite ß-cage in Na8[AlSiO4]6(ReO4)2. We also demonstrate, for the first time, that the TcO4- anion can be incorporated into the sodalite structure. Lastly, thermochemistry measurements for the perrhenate sodalite were used to estimate the thermochemistry of pertechnetate sodalite based on a relationship between ionic potential and the enthalpy and Gibbs free energy of formation for previously measured oxyanion-bearing feldspathoid phases. The results collected in this study suggest that micro- and mesoporous crystalline solids maybe viable candidates for the treatment and immobilization of 99Tc present in reprocessed nuclear waste streams and contaminated subsurface environments.


Subject(s)
Radioactive Waste , Sodium Pertechnetate Tc 99m , Organic Chemicals , Technetium
14.
Environ Sci Technol ; 50(24): 13335-13341, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27993064

ABSTRACT

Microbial conversion of inorganic mercury (IHg) to methylmercury (MeHg) is a significant environmental concern because of the bioaccumulation and biomagnification of toxic MeHg in the food web. Laboratory incubation studies have shown that, despite the presence of large quantities of IHg in cell cultures, MeHg biosynthesis often reaches a plateau or a maximum within hours or a day by an as yet unexplained mechanism. Here we report that mercuric Hg(II) can be taken up rapidly by cells of Desulfovibrio desulfuricans ND132, but a large fraction of the Hg(II) is unavailable for methylation because of strong cellular sorption. Thiols, such as cysteine, glutathione, and penicillamine, added either simultaneously with Hg(II) or after cells have been exposed to Hg(II), effectively desorb or mobilize the bound Hg(II), leading to a substantial increase in MeHg production. The amount of thiol-desorbed Hg(II) is strongly correlated to the amount of MeHg produced (r = 0.98). However, cells do not preferentially take up Hg(II)-thiol complexes, but Hg(II)-ligand exchange between these complexes and the cell-associated proteins likely constrains Hg(II) uptake and methylation. We suggest that, aside from aqueous chemical speciation of Hg(II), binding and exchange of Hg(II) between cells and complexing ligands such as thiols and naturally dissolved organics in solution is an important controlling mechanism of Hg(II) bioavailability, which should be considered when predicting MeHg production in the environment.


Subject(s)
Desulfovibrio desulfuricans/metabolism , Mercury/chemistry , Biological Availability , Methylmercury Compounds/metabolism , Sulfhydryl Compounds/metabolism , Water Pollutants, Chemical/metabolism
15.
Environ Sci Technol ; 50(8): 4366-73, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27019098

ABSTRACT

Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 µM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments.


Subject(s)
Environmental Pollutants/metabolism , Geobacter/metabolism , Mercury/metabolism , Anaerobiosis , Biodegradation, Environmental , Cysteine/chemistry , Environmental Pollutants/chemistry , Iron/metabolism , Lyases/metabolism , Mercury/chemistry , Methylation , Methylmercury Compounds/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism
16.
Environ Sci Technol ; 49(20): 12105-11, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26389816

ABSTRACT

The impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reacting with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.


Subject(s)
Mercury Compounds/chemistry , Mercury/chemistry , Oxides/chemistry , Soil Pollutants/chemistry , Manganese Compounds/chemistry , Mercury/analysis , Soil/chemistry , Soil Pollutants/analysis , Solubility , Water/chemistry , X-Ray Absorption Spectroscopy
17.
Environ Sci Technol ; 48(21): 12851-7, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25280127

ABSTRACT

Nuclear waste storage tanks at the Hanford site in southeastern Washington have released highly alkaline solutions, containing radioactive and other contaminants, into subsurface sediments. When this waste reacts with subsurface sediments, feldspathoid minerals (sodalite, cancrinite) can form, sequestering pertechnetate (99TcO4-) and other ions. This study investigates the potential for incorporation of perrhenate (ReO4-), a chemical surrogate for 99TcO4-, into mixed perrhenate/nitrate (ReO4-/NO3-) sodalite. Mixed-anion sodalites were hydrothermally synthesized in the laboratory from zeolite A in sodium hydroxide, nitrate, and perrhenate solutions at 90 °C for 24 h. The resulting solids were characterized by bulk chemical analysis, X-ray diffraction, scanning electron microscopy, and X-ray absorption near edge structure spectroscopy (XANES) to determine the products' chemical composition, structure, morphology, and Re oxidation state. The XANES data indicated that nearly all rhenium (Re) was incorporated as Re(VII)O4-. The nonlinear increase of the unit cell parameter with ReO4-/NO3- ratios suggests formation of two separate sodalite phases in lieu of a mixed-anion sodalite. The results reveal that the sodalite cage is highly selective toward NO3- over ReO4-. Calculated enthalpy and Gibbs free energy of formation at 298 K for NO3- and ReO4-sodalite suggest that NO3- incorporation into the cage is favored over the incorporation of the larger ReO4-, due to the smaller ionic radius of NO3-. Based on these results, it is expected that NO3-, which is present at significantly higher concentrations in alkaline waste solutions than 99TcO4-, will be strongly preferred for incorporation into the sodalite cage.


Subject(s)
Minerals/chemistry , Nitrates/chemistry , Rhenium/chemistry , Anions , Microscopy, Electron, Scanning , Minerals/analysis , Radioactive Waste/analysis , Solutions , Temperature , Washington , Water/chemistry , X-Ray Absorption Spectroscopy , X-Ray Diffraction
18.
Environ Res ; 125: 20-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23809204

ABSTRACT

Historical use of liquid elemental mercury (Hg(0)l) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0)l in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0)g headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0)l in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400mg/kg. In the first core, Hg(0)l was distributed throughout the 3.2m depth, whereas the second core, from a location 12m away, contained Hg(0)l in a 0.3m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0)l is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the subsurface has remobilized the Hg.


Subject(s)
Environmental Monitoring/statistics & numerical data , Mercury/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , Groundwater/chemistry , Mercury/chemistry , Oxidation-Reduction , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic , Tennessee
19.
Environ Pollut ; 331(Pt 1): 121790, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37187279

ABSTRACT

The cell surface adsorption and intracellular uptake of mercuric mercury Hg(II) and methylmercury (MeHg) are important in determining the fate and transformation of Hg in the environment. However, current information is limited about their interactions with two important groups of microorganisms, i.e., methanotrophs and Hg(II)-methylating bacteria, in aquatic systems. This study investigated the adsorption and uptake dynamics of Hg(II) and MeHg by three strains of methanotrophs, Methylomonas sp. strain EFPC3, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath, and two Hg(II)-methylating bacteria, Pseudodesulfovibrio mercurii ND132 and Geobacter sulfurreducens PCA. Distinctive behaviors of these microorganisms towards Hg(II) and MeHg adsorption and intracellular uptake were observed. The methanotrophs took up 55-80% of inorganic Hg(II) inside cells after 24 h incubation, lower than methylating bacteria (>90%). Approximately 80-95% of MeHg was rapidly taken up by all the tested methanotrophs within 24 h. In contrast, after the same time, G. sulfurreducens PCA adsorbed 70% but took up <20% of MeHg, while P. mercurii ND132 adsorbed <20% but took up negligible amounts of MeHg. These results suggest that microbial surface adsorption and intracellular uptake of Hg(II) and MeHg depend on the specific types of microbes and appear to be related to microbial physiology that requires further detailed investigation. Despite being incapable of methylating Hg(II), methanotrophs play important roles in immobilizing both Hg(II) and MeHg, potentially influencing their bioavailability and trophic transfer. Therefore, methanotrophs are not only important sinks for methane but also for Hg(II) and MeHg and can influence the global cycling of C and Hg.


Subject(s)
Mercury , Methylmercury Compounds , Methylmercury Compounds/metabolism , Mercury/metabolism , Adsorption , Methylation , Bacteria/metabolism
20.
J Hazard Mater ; 445: 130589, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-37055993

ABSTRACT

Over 3000 mercury (Hg)-contaminated sites worldwide contain liquid metallic Hg [Hg(0)l] representing a continuous source of elemental Hg(0) in the environment through volatilization and solubilization in water. Currently, there are few effective treatment technologies available to remove or sequester Hg(0)l in situ. We investigated sonochemical treatments coupled with complexing agents, polysulfide and sulfide, in oxidizing Hg(0)l and stabilizing Hg in water, soil and quartz sand. Results indicate that sonication is highly effective in breaking up and oxidizing liquid Hg(0)l beads via acoustic cavitation, particularly in the presence of polysulfide. Without complexing agents, sonication caused only minor oxidation of Hg(0)l but increased headspace gaseous Hg(0)g and dissolved Hg(0)aq in water. However, the presence of polysulfide essentially stopped Hg(0) volatilization and solubilization. As a charged polymer, polysulfide was more effective than sulfide in oxidizing Hg(0)l and subsequently stabilizing the precipitated metacinnabar (ß-HgS) nanocrystals. Sonochemical treatments with sulfide yielded incomplete oxidation of Hg(0)l, likely resulting from the formation of HgS coatings on the dispersed µm-size Hg(0)l bead surfaces. Sonication with polysulfide also resulted in rapid oxidation of Hg(0)l and precipitation of HgS in quartz sand and in the Hg(0)l-contaminated soil. This research indicates that sonochemical treatment with polysulfide could be an effective means in rapidly converting Hg(0)l to insoluble HgS precipitates in water and sediments, thereby preventing its further emission and release to the environment. We suggest that future studies are performed to confirm its technical feasibility and treatment efficacy for remediation applications.

SELECTION OF CITATIONS
SEARCH DETAIL