Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Nutr ; 154(1): 121-132, 2024 01.
Article in English | MEDLINE | ID: mdl-37952777

ABSTRACT

BACKGROUND: Previously, we assessed the impact of restrictive diets, including caloric restriction (CR), intermittent fasting (IF), or fasting-mimicking diet (FMD), on a healthy gastrointestinal tract. We revealed that each of the diets shows anti-inflammatory outcomes. OBJECTIVE: The current study aimed to verify the diets' applicability in treating colitis. METHODS: We exposed a mouse model with mild chronic dextran sodium sulfate (DSS)-induced colitis to ad libitum control feeding, CR, IF, or FMD. The collected samples were analyzed for markers of inflammation. RESULTS: The diets reduced DSS-triggered increases in spleen weight and myeloperoxidase (MPO) activity. Diet intervention also influenced occludin levels, small intestine morphology, as well as cytokine and inflammatory gene expression, mainly in the mucosa of the proximal colon. The diets did not reverse DSS-enhanced gut permeability and thickening of the colon muscularis externa. Concerning inflammatory gene expression, the impact of DSS and the dietary intervention was limited to the colon as we did not measure major changes in the jejunum mucosa, Peyer's patches, and mesenteric lymph nodes. Further, rather modest changes in the concentration of intestinal bile acids were observed in response to the diets, whereas taurine and its conjugates levels were strongly affected. CONCLUSIONS: Despite the differences in the dietary protocol, the tested diets showed very similar impacts and, therefore, may be interchangeable when aiming to reduce inflammation in the colon. However, FMD showed the most consistent beneficial impact.


Subject(s)
Colitis , Dextrans , Sulfates , Male , Animals , Mice , Dextrans/adverse effects , Dextrans/metabolism , Colitis/chemically induced , Colitis/metabolism , Colon/metabolism , Inflammation/metabolism , Disease Models, Animal , Diet , Dextran Sulfate , Mice, Inbred C57BL
2.
J Nutr ; 154(7): 2014-2028, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735572

ABSTRACT

BACKGROUND: The gut microbiota contributes to metabolic disease, and diet shapes the gut microbiota, emphasizing the need to better understand how diet impacts metabolic disease via gut microbiota alterations. Fiber intake is linked with improvements in metabolic homeostasis in rodents and humans, which is associated with changes in the gut microbiota. However, dietary fiber is extremely heterogeneous, and it is imperative to comprehensively analyze the impact of various plant-based fibers on metabolic homeostasis in an identical setting and compare the impact of alterations in the gut microbiota and bacterially derived metabolites from different fiber sources. OBJECTIVES: The objective of this study was to analyze the impact of different plant-based fibers (pectin, ß-glucan, wheat dextrin, resistant starch, and cellulose as a control) on metabolic homeostasis through alterations in the gut microbiota and its metabolites in high-fat diet (HFD)-fed mice. METHODS: HFD-fed mice were supplemented with 5 different fiber types (pectin, ß-glucan, wheat dextrin, resistant starch, or cellulose as a control) at 10% (wt/wt) for 18 wk (n = 12/group), measuring body weight, adiposity, indirect calorimetry, glucose tolerance, and the gut microbiota and metabolites. RESULTS: Only ß-glucan supplementation during HFD-feeding decreased adiposity and body weight gain and improved glucose tolerance compared with HFD-cellulose, whereas all other fibers had no effect. This was associated with increased energy expenditure and locomotor activity in mice compared with HFD-cellulose. All fibers supplemented into an HFD uniquely shifted the intestinal microbiota and cecal short-chain fatty acids; however, only ß-glucan supplementation increased cecal butyrate concentrations. Lastly, all fibers altered the small-intestinal microbiota and portal bile acid composition. CONCLUSIONS: These findings demonstrate that ß-glucan consumption is a promising dietary strategy for metabolic disease, possibly via increased energy expenditure through alterations in the gut microbiota and bacterial metabolites in mice.


Subject(s)
Diet, High-Fat , Dietary Fiber , Gastrointestinal Microbiome , Homeostasis , Mice, Inbred C57BL , Animals , Dietary Fiber/pharmacology , Dietary Fiber/administration & dosage , Gastrointestinal Microbiome/drug effects , Mice , Male , beta-Glucans/pharmacology , beta-Glucans/administration & dosage , Pectins/pharmacology , Pectins/administration & dosage
3.
Chemistry ; 29(29): e202300094, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36866600

ABSTRACT

The synthesis of imines denotes a cornerstone in organic chemistry. The use of alcohols as renewable substituents for carbonyl-functionality represents an attractive opportunity. Consequently, carbonyl moieties can be in situ generated from alcohols upon transition-metal catalysis under inert atmosphere. Alternatively, bases can be utilized under aerobic conditions. In this context, we report the synthesis of imines from benzyl alcohols and anilines, promoted by KOt Bu under aerobic conditions at room temperature, in the absence of any transition-metal catalyst. A detailed investigation of the radical mechanism of the underlying reaction is presented. This reveals a complex reaction network fully supporting the experimental findings.

4.
Arch Toxicol ; 97(6): 1659-1675, 2023 06.
Article in English | MEDLINE | ID: mdl-37117602

ABSTRACT

Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.


Subject(s)
Mechanotransduction, Cellular , Palmitic Acid , Humans , Palmitic Acid/toxicity , Palmitic Acid/metabolism , Proteomics , Fatty Acids , Oleic Acid/metabolism
5.
Compr Rev Food Sci Food Saf ; 22(4): 2678-2705, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37097053

ABSTRACT

Lipid oxidation is an inevitable event during the processing, storage, and even consumption of lipid-containing food, which may cause adverse effects on both food quality and human health. Water-in-oil (W/O) food emulsions contain a high content of lipids and small water droplets, which renders them vulnerable to lipid oxidation. The present review provides comprehensive insights into the lipid oxidation of W/O food emulsions. The key influential factors of lipid oxidation in W/O food emulsions are presented systematically. To better interpret the specific mechanisms of lipid oxidation in W/O food emulsions, a comprehensive detection method, oxidative lipidomics (oxidomics), is proposed to identify novel markers, which not only tracks the chemical molecules but also considers the changes in supramolecular properties, sensory properties, and nutritional value. The microstructure of emulsions, components from both phases, emulsifiers, pH, temperature, and light should be taken into account to identify specific oxidation markers. A correlation of these novel oxidation markers with the shelf life, the organoleptic properties, and the nutritional value of W/O food emulsions should be applied to develop targeted protective approaches for limiting lipid oxidation. Accordingly, the processing parameters, the application of antioxidants and emulsifiers, as well as packing and storage conditions can be optimized to develop W/O emulsions with improved oxidative stability. This review may help in emphasizing the future research priorities of investigating the mechanisms of lipid oxidation in W/O emulsion by oxidomics, leading to practical solutions for the food industry to prevent oxidative rancidity in W/O food emulsions.


Subject(s)
Antioxidants , Water , Humans , Emulsions/chemistry , Water/chemistry , Antioxidants/chemistry , Oxidation-Reduction , Emulsifying Agents/chemistry , Lipids/chemistry
6.
Rev Med Virol ; 31(5): 1-13, 2021 09.
Article in English | MEDLINE | ID: mdl-34546604

ABSTRACT

Viruses have evolved to manipulate host lipid metabolism to benefit their replication cycle. Enveloped viruses, including coronaviruses, use host lipids in various stages of the viral life cycle, particularly in the formation of replication compartments and envelopes. Host lipids are utilised by the virus in receptor binding, viral fusion and entry, as well as viral replication. Association of dyslipidaemia with the pathological development of Covid-19 raises the possibility that exploitation of host lipid metabolism might have therapeutic benefit against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, promising host lipid targets are discussed along with potential inhibitors. In addition, specific host lipids are involved in the inflammatory responses due to viral infection, so lipid supplementation represents another potential strategy to counteract the severity of viral infection. Furthermore, switching the lipid metabolism through a ketogenic diet is another potential way of limiting the effects of viral infection. Taken together, restricting the access of host lipids to the virus, either by using lipid inhibitors or supplementation with exogenous lipids, might significantly limit SARS-CoV-2 infection and/or severity.


Subject(s)
COVID-19/metabolism , Lipid Metabolism , SARS-CoV-2/physiology , Animals , COVID-19/diet therapy , COVID-19/immunology , COVID-19/prevention & control , Humans , Lipids/immunology , SARS-CoV-2/genetics
7.
Eur J Inorg Chem ; 2021(41): 4280-4285, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34819799

ABSTRACT

A series of cobalt complexes, stabilized by a monoanionic tridentate NCN pincer ligand, was synthetized and characterized. Preparation of the paramagnetic 15 VE complex [Co(NCNCH2-Et)Br] (1) was accomplished by transmetalation of Li[2,6-(Et2NCH2)2C6H3] with CoBr2 in THF. Treatment of this air-sensitive compound with NO gas resulted in the formation of the diamagnetic Co(III) species [Co(NCNCH2-Et)(NO)Br] (2) as confirmed by X-ray diffraction. This complex features a strongly bent NO ligand (Co-N-O∠135.0°). The νNO is observed at 1609 cm-1 which is typical for a bent metal-N-O arrangement. Coordinatively unsaturated 1 could further be treated with pyridine, isocyanides, phosphines and CO to form five-coordinate 17 VE complexes. Oxidation of 1 with CuBr2 led to the formation of the Co(III) complex [Co(NCNCH2-Et)Br2]. Treatment of [Co(NCNCH2-Et)Br2] with TlBF4 as halide scavenger in acetonitrile led to the formation of the cationic octahedral complex [Co(NCNCH2-Et)(MeCN)3](BF4)2. A combination of X-ray crystallography, IR-, NMR- and EPR-spectroscopy as well as DFT/CAS-SCF calculations were used to characterize all compounds.

8.
Int J Mol Sci ; 22(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070942

ABSTRACT

Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.


Subject(s)
Arginine/pharmacology , Gastric Acid/metabolism , Parietal Cells, Gastric/drug effects , Protons , Serotonin/biosynthesis , Cell Line, Tumor , Fenclonine/pharmacology , Gene Expression , Granisetron/pharmacology , Humans , Hydrogen-Ion Concentration , Parietal Cells, Gastric/cytology , Parietal Cells, Gastric/metabolism , Protease Inhibitors/pharmacology , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism , Serotonin Antagonists/pharmacology , Stomach/cytology , Stomach/drug effects , Tissue Culture Techniques , Tryptophan Hydroxylase/antagonists & inhibitors , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
9.
Molecules ; 25(2)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963288

ABSTRACT

Non-enzymatic browning reactions between lipid aldehydes and aminophospholipids might play an important role in the oxidative stability of cold-pressed vegetable oils. We, therefore, aimed to study the Maillard-type reaction between hexanal, a lipid oxidation product of linoleic acid, and phosphatidylethanolamine (PE (16:0/18:1)) at a ratio of 2:1 at conditions representative of the extraction of cold-pressed soybean oils (CPSBO) and determine the radical scavenging activity of the carbonyl-amine adducts with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The reaction product, 2-pentyl-3,5-dibutyl-dihydropyridine, could be identified by means of LC-ESI-QTOF-MS/MS. The formation of this nitrogen-containing heterocycle significantly increased with time and temperature (p < 0.05). The products formed during the carbonyl-amine reaction between PE (16:0/18:1) and hexanal at 60 °C showed a radical scavenging activity of approximately 20% (p < 0.05). The fraction, containing 2-pentyl-3,5-dibutyl-dihydropyridine, contributed to, but was not solely responsible for, the radical scavenging activity (p < 0.05). Incubation of CPSBO fortified with PE (16:0/18:1) at 60 °C for 60 min had the strongest radical scavenging activity of 85.1 ± 0.62%. Besides 2-pentyl-3,5-dibutyl-dihydropyridine, other carbonyl-amine adducts might impact the radical scavenging activity of CPSBO as well. The oxidative stability of CPSBO might be increased by promoting the formation of carbonyl-amine reaction products, such as 2-pentyl-3,5-dibutyl-dihydropyridine.


Subject(s)
Amines/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Phosphatidylethanolamines/chemistry , Soybean Oil/chemistry , Aldehydes/chemistry , Chromatography, Liquid , Lipid Metabolism , Magnetic Resonance Spectroscopy , Molecular Structure , Oxidation-Reduction , Structure-Activity Relationship , Tandem Mass Spectrometry
10.
Matern Child Nutr ; 16(1): e12856, 2020 01.
Article in English | MEDLINE | ID: mdl-31183951

ABSTRACT

Child malnutrition remains persistently high in Rwanda. Complementary foods play a key role in young child nutrition. This study explores the quality and safety of complementary food products available in the Rwandan market. Ten of the most consumed porridge-type complementary food products in Rwanda have been analysed. Mean values of macronutrient and micronutrient contents were compared against three international standards and evaluated against label claims. Mean mycotoxin, microbiological, and pesticide contamination were compared with maximum tolerable limits. Mean energy density (385 kcal/100 g) and total fat content (7.9 g/100 g) were lower than all three international benchmarks. The mean fibre content of 8.5 g/100 g was above the maximum recommended amount of Codex Alimentarius and more than double the amount claimed on labels. Mean levels of vitamin A (retinyl palmitate, 0.54 mg/100 g) and vitamin E (α-tocopherol, 3.7 mg/100 g) fell significantly short of all three standards, whereas calcium and zinc requirements were only partially met. Average iron content was 12.1 mg/100 g. The analysis revealed a mean aflatoxin contamination of 61 µg/kg, and high mold and yeast infestation. Escherichia coli and pesticide residues were found, whereas no heavy metals could be quantitated. Overall, complementary food products in Rwanda show inadequate nutrient contents and high aflatoxin and microbial contamination levels. Improved regulation and monitoring of both local and imported products are needed to improve the quality and safety of complementary foods in Rwanda.


Subject(s)
Food Contamination , Food, Fortified/analysis , Food, Fortified/standards , Infant Nutritional Physiological Phenomena , Nutritive Value , Escherichia coli , Food Labeling/standards , Food, Fortified/microbiology , Fungi , Humans , Infant , Micronutrients/analysis , Mycotoxins/analysis , Nutrients/analysis , Nutritional Requirements , Pesticides , Rwanda , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL