Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
FASEB J ; 36(3): e22176, 2022 03.
Article in English | MEDLINE | ID: mdl-35129866

ABSTRACT

To gain further insight into chromatin-mediated regulation of mammalian sex determination, we analyzed the role of the CHARGE syndrome-associated proteins FAM172A and CHD7. This study is based on our prior discoveries that a subset of corresponding mutant mice display complete male-to-female sex reversal, and that both of these proteins regulate co-transcriptional alternative splicing in neural crest cells. Here, we report that FAM172A and CHD7 are present in the developing gonads when sex determination normally occurs in mice. The interactome of FAM172A in pre-Sertoli cells again suggests a role at the chromatin-spliceosome interface, like in neural crest cells. Accordingly, analysis of Fam172a-mutant pre-Sertoli cells revealed transcriptional and splicing dysregulation of hundreds of genes. Many of these genes are similarly affected in Chd7-mutant pre-Sertoli cells, including several known key regulators of sex determination and subsequent formation of testis cords. Among them, we notably identified Sry as a direct transcriptional target and WNT pathway-associated Lef1 and Tcf7l2 as direct splicing targets. The identified molecular defects are also associated with the abnormal morphology of seminiferous tubules in mutant postnatal testes. Altogether, our results thus identify FAM172A and CHD7 as new players in the regulation of male sex determination and differentiation in mice, and further highlight the importance of chromatin-mediated regulatory mechanisms in these processes.


Subject(s)
Alternative Splicing , CHARGE Syndrome/genetics , DNA-Binding Proteins/metabolism , Proteins/metabolism , Sex Determination Processes , Transcriptome , Animals , Cell Line , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred C57BL , Proteins/genetics , Sertoli Cells/metabolism , Spermatogenesis , Swine
2.
EMBO Rep ; 22(6): e50958, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33900016

ABSTRACT

Mutations in the chromatin remodeller-coding gene CHD7 cause CHARGE syndrome (CS). CS features include moderate to severe neurological and behavioural problems, clinically characterized by intellectual disability, attention-deficit/hyperactivity disorder and autism spectrum disorder. To investigate the poorly characterized neurobiological role of CHD7, we here generate a zebrafish chd7-/- model. chd7-/- mutants have less GABAergic neurons and exhibit a hyperactivity behavioural phenotype. The GABAergic neuron defect is at least in part due to downregulation of the CHD7 direct target gene paqr3b, and subsequent upregulation of MAPK/ERK signalling, which is also dysregulated in CHD7 mutant human cells. Through a phenotype-based screen in chd7-/- zebrafish and Caenorhabditis elegans, we show that the small molecule ephedrine restores normal levels of MAPK/ERK signalling and improves both GABAergic defects and behavioural anomalies. We conclude that chd7 promotes paqr3b expression and that this is required for normal GABAergic network development. This work provides insight into the neuropathogenesis associated with CHD7 deficiency and identifies a promising compound for further preclinical studies.


Subject(s)
Autism Spectrum Disorder , Animals , Caenorhabditis elegans , Chromatin , DNA Helicases , DNA-Binding Proteins/genetics , GABAergic Neurons , Humans , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Mutation , Zebrafish
3.
PLoS Genet ; 16(9): e1009008, 2020 09.
Article in English | MEDLINE | ID: mdl-32898154

ABSTRACT

Hirschsprung disease (HSCR) is a complex genetic disorder of neural crest development resulting in incomplete formation of the enteric nervous system (ENS). This life-threatening neurocristopathy affects 1/5000 live births, with a currently unexplained male-biased ratio. To address this lack of knowledge, we took advantage of the TashT mutant mouse line, which is the only HSCR model to display a robust male bias. Our prior work revealed that the TashT insertional mutation perturbs a Chr.10 silencer-enriched non-coding region, leading to transcriptional dysregulation of hundreds of genes in neural crest-derived ENS progenitors of both sexes. Here, through sex-stratified transcriptome analyses and targeted overexpression in ENS progenitors, we show that male-biased ENS malformation in TashT embryos is not due to upregulation of Sry-the murine ortholog of a candidate gene for the HSCR male bias in humans-but instead involves upregulation of another Y-linked gene, Ddx3y. This discovery might be clinically relevant since we further found that the DDX3Y protein is also expressed in the ENS of a subset of male HSCR patients. Mechanistically, other data including chromosome conformation captured-based assays and CRISPR/Cas9-mediated deletions suggest that Ddx3y upregulation in male TashT ENS progenitors is due to increased transactivation by p53, which appears especially active in these cells yet without triggering apoptosis. Accordingly, in utero treatment of TashT embryos with the p53 inhibitor pifithrin-α decreased Ddx3y expression and abolished the otherwise more severe ENS defect in TashT males. Our data thus highlight novel pathogenic roles for p53 and DDX3Y during ENS formation in mice, a finding that might help to explain the intriguing male bias of HSCR in humans.


Subject(s)
DEAD-box RNA Helicases/genetics , Hirschsprung Disease/genetics , Minor Histocompatibility Antigens/genetics , Animals , DEAD-box RNA Helicases/metabolism , Disease Models, Animal , Enteric Nervous System/metabolism , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Hirschsprung Disease/metabolism , Humans , Infant , Infant, Newborn , Male , Mice , Minor Histocompatibility Antigens/metabolism , Mutagenesis, Insertional , Mutation , Neural Crest/metabolism , Sex Factors , Transcriptional Activation/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation
4.
Int J Mol Sci ; 24(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37569849

ABSTRACT

The enteric nervous system (ENS), known as the intrinsic nervous system of the gastrointestinal tract, is composed of a diverse array of neuronal and glial cell subtypes. Fascinating questions surrounding the generation of cellular diversity in the ENS have captivated ENS biologists for a considerable time, particularly with recent advancements in cell type-specific transcriptomics at both population and single-cell levels. However, the current focus of research in this field is predominantly restricted to the study of enteric neuron subtypes, while the investigation of enteric glia subtypes significantly lags behind. Despite this, enteric glial cells (EGCs) are increasingly recognized as equally important regulators of numerous bowel functions. Moreover, a subset of postnatal EGCs exhibits remarkable plasticity and multipotency, distinguishing them as critical entities in the context of advancing regenerative medicine. In this review, we aim to provide an updated overview of the current knowledge on this subject, while also identifying key questions that necessitate future exploration.

5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36430161

ABSTRACT

The first volume of this Special Issue met its goal of covering several aspects regarding both the normal and abnormal development of neural crest cells, which form a truly unique multipotent and highly migratory cell population that only exists in vertebrates [...].


Subject(s)
Neural Crest , Neurogenesis , Animals , Cell Movement , Vertebrates
6.
Gastroenterology ; 159(5): 1824-1838.e17, 2020 11.
Article in English | MEDLINE | ID: mdl-32687927

ABSTRACT

BACKGROUND & AIMS: Hirschsprung disease (HSCR) is a life-threatening birth defect in which the distal colon is devoid of enteric neural ganglia. HSCR is treated by surgical removal of aganglionic bowel, but many children continue to have severe problems after surgery. We studied whether administration of glial cell derived neurotrophic factor (GDNF) induces enteric nervous system regeneration in mouse models of HSCR. METHODS: We performed studies with four mouse models of HSCR: Holstein (HolTg/Tg, a model for trisomy 21-associated HSCR), TashT (TashTTg/Tg, a model for male-biased HSCR), Piebald-lethal (Ednrbs-l//s-l, a model for EDNRB mutation-associated HSCR), and Ret9/- (with aganglionosis induced by mycophenolate). Mice were given rectal enemas containing GDNF or saline (control) from postnatal days 4 through 8. We measured survival times of mice, and colon tissues were analyzed by histology, immunofluorescence, and immunoblots. Neural ganglia regeneration and structure, bowel motility, epithelial permeability, muscle thickness, and neutrophil infiltration were studied in colon tissues and in mice. Stool samples were collected, and microbiomes were analyzed by 16S rRNA gene sequencing. Time-lapse imaging and genetic cell-lineage tracing were used to identify a source of GDNF-targeted neural progenitors. Human aganglionic colon explants from children with HSCR were cultured with GDNF and evaluated for neurogenesis. RESULTS: GDNF significantly prolonged mean survival times of HolTg/Tg mice, Ednrbs-l//s-l mice, and male TashTTg/Tg mice, compared with control mice, but not Ret9/- mice (which had mycophenolate toxicity). Mice given GDNF developed neurons and glia in distal bowel tissues that were aganglionic in control mice, had a significant increase in colon motility, and had significant decreases in epithelial permeability, muscle thickness, and neutrophil density. We observed dysbiosis in fecal samples from HolTg/Tg mice compared with feces from wild-type mice; fecal microbiomes of mice given GDNF were similar to those of wild-type mice except for Bacteroides. Exogenous luminal GDNF penetrated aganglionic colon epithelium of HolTg/Tg mice, inducing production of endogenous GDNF, and new enteric neurons and glia appeared to arise from Schwann cells within extrinsic nerves. GDNF application to cultured explants of human aganglionic bowel induced proliferation of Schwann cells and formation of new neurons. CONCLUSIONS: GDNF prolonged survival, induced enteric neurogenesis, and improved colon structure and function in 3 mouse models of HSCR. Application of GDNF to cultured explants of aganglionic bowel from children with HSCR induced proliferation of Schwann cells and formation of new neurons. GDNF might be developed for treatment of HSCR.


Subject(s)
Colon/drug effects , Colon/innervation , Enteric Nervous System/drug effects , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Hirschsprung Disease/drug therapy , Nerve Regeneration/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Animals , Colon/microbiology , Colon/pathology , Disease Models, Animal , Dysbiosis , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Enteric Nervous System/physiopathology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Motility/drug effects , Hirschsprung Disease/metabolism , Hirschsprung Disease/pathology , Hirschsprung Disease/physiopathology , Humans , Intestinal Absorption/drug effects , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Permeability , Recovery of Function , Schwann Cells/drug effects , Schwann Cells/metabolism , Schwann Cells/pathology , Tissue Culture Techniques
7.
Proc Natl Acad Sci U S A ; 115(4): E620-E629, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311329

ABSTRACT

CHARGE syndrome-which stands for coloboma of the eye, heart defects, atresia of choanae, retardation of growth/development, genital abnormalities, and ear anomalies-is a severe developmental disorder with wide phenotypic variability, caused mainly by mutations in CHD7 (chromodomain helicase DNA-binding protein 7), known to encode a chromatin remodeler. The genetic lesions responsible for CHD7 mutation-negative cases are unknown, at least in part because the pathogenic mechanisms underlying CHARGE syndrome remain poorly defined. Here, we report the characterization of a mouse model for CHD7 mutation-negative cases of CHARGE syndrome generated by insertional mutagenesis of Fam172a (family with sequence similarity 172, member A). We show that Fam172a plays a key role in the regulation of cotranscriptional alternative splicing, notably by interacting with Ago2 (Argonaute-2) and Chd7. Validation studies in a human cohort allow us to propose that dysregulation of cotranscriptional alternative splicing is a unifying pathogenic mechanism for both CHD7 mutation-positive and CHD7 mutation-negative cases. We also present evidence that such splicing defects can be corrected in vitro by acute rapamycin treatment.


Subject(s)
Alternative Splicing , CHARGE Syndrome/etiology , Disease Models, Animal , Proteins/genetics , Animals , Antibiotics, Antineoplastic/therapeutic use , Argonaute Proteins/metabolism , CHARGE Syndrome/metabolism , COS Cells , Chlorocebus aethiops , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drug Evaluation, Preclinical , Female , Humans , Male , Mice , Mice, Transgenic , Neural Crest/embryology , Pregnancy , Rabbits , Rats , Sirolimus/therapeutic use
8.
Int J Mol Sci ; 22(23)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34884944

ABSTRACT

Hirschsprung disease is a congenital malformation where ganglia of the neural crest-derived enteric nervous system are missing over varying lengths of the distal gastrointestinal tract. This complex genetic condition involves both rare and common variants in dozens of genes, many of which have been functionally validated in animal models. Modifier loci present in the genetic background are also believed to influence disease penetrance and severity, but this has not been frequently tested in animal models. Here, we addressed this question using Holstein mice in which aganglionosis is due to excessive deposition of collagen VI around the developing enteric nervous system, thereby allowing us to model trisomy 21-associated Hirschsprung disease. We also asked whether the genetic background might influence the response of Holstein mice to GDNF enemas, which we recently showed to have regenerative properties for the missing enteric nervous system. Compared to Holstein mice in their original FVB/N genetic background, Holstein mice maintained in a C57BL/6N background were found to have a less severe enteric nervous system defect and to be more responsive to GDNF enemas. This change of genetic background had a positive impact on the enteric nervous system only, leaving the neural crest-related pigmentation phenotype of Holstein mice unaffected. Taken together with other similar studies, these results are thus consistent with the notion that the enteric nervous system is more sensitive to genetic background changes than other neural crest derivatives.


Subject(s)
Collagen Type VI/genetics , Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Hirschsprung Disease/drug therapy , Hirschsprung Disease/genetics , Animals , Disease Models, Animal , Enema , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Regenerative Medicine , Treatment Outcome
9.
Development ; 143(8): 1363-74, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26952979

ABSTRACT

Numerous studies in chordates and arthropods currently indicate that Cdx proteins have a major ancestral role in the organization of post-head tissues. In urochordate embryos, Cdx loss-of-function has been shown to impair axial elongation, neural tube (NT) closure and pigment cell development. Intriguingly, in contrast to axial elongation and NT closure, a Cdx role in neural crest (NC)-derived melanocyte/pigment cell development has not been reported in any other chordate species. To address this, we generated a new conditional pan-Cdx functional knockdown mouse model that circumvents Cdx functional redundancy as well as the early embryonic lethality of Cdx mutants. Through directed inhibition in the neuroectoderm, we provide in vivo evidence that murine Cdx proteins impact melanocyte and enteric nervous system development by, at least in part, directly controlling the expression of the key early regulators of NC ontogenesis Pax3,Msx1 and Foxd3 Our work thus reveals a novel role for Cdx proteins at the top of the trunk NC gene regulatory network in the mouse, which appears to have been inherited from their ancestral ortholog.


Subject(s)
Gene Regulatory Networks , Neural Crest/cytology , Animals , Cell Differentiation/genetics , Forkhead Transcription Factors/genetics , Gene Knockdown Techniques , Homeodomain Proteins/metabolism , MSX1 Transcription Factor/genetics , Melanocytes/cytology , Mice , Models, Biological , PAX3 Transcription Factor , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Repressor Proteins/genetics
10.
PLoS Genet ; 11(3): e1005093, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25786024

ABSTRACT

Neural crest cells (NCC) are a transient migratory cell population that generates diverse cell types such as neurons and glia of the enteric nervous system (ENS). Via an insertional mutation screen for loci affecting NCC development in mice, we identified one line-named TashT-that displays a partially penetrant aganglionic megacolon phenotype in a strong male-biased manner. Interestingly, this phenotype is highly reminiscent of human Hirschsprung's disease, a neurocristopathy with a still unexplained male sex bias. In contrast to the megacolon phenotype, colonic aganglionosis is almost fully penetrant in homozygous TashT animals. The sex bias in megacolon expressivity can be explained by the fact that the male ENS ends, on average, around a "tipping point" of minimal colonic ganglionosis while the female ENS ends, on average, just beyond it. Detailed analysis of embryonic intestines revealed that aganglionosis in homozygous TashT animals is due to slower migration of enteric NCC. The TashT insertional mutation is localized in a gene desert containing multiple highly conserved elements that exhibit repressive activity in reporter assays. RNAseq analyses and 3C assays revealed that the TashT insertion results, at least in part, in NCC-specific relief of repression of the uncharacterized gene Fam162b; an outcome independently confirmed via transient transgenesis. The transcriptional signature of enteric NCC from homozygous TashT embryos is also characterized by the deregulation of genes encoding members of the most important signaling pathways for ENS formation-Gdnf/Ret and Edn3/Ednrb-and, intriguingly, the downregulation of specific subsets of X-linked genes. In conclusion, this study not only allowed the identification of Fam162b coding and regulatory sequences as novel candidate loci for Hirschsprung's disease but also provides important new insights into its male sex bias.


Subject(s)
Disease Models, Animal , Hirschsprung Disease/genetics , Hirschsprung Disease/pathology , Mice , Mutagenesis, Insertional , Animals , Chromosomes, Mammalian , Enteric Nervous System/abnormalities , Hirschsprung Disease/embryology , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Crest/metabolism , Silencer Elements, Transcriptional , Transcriptome
11.
Am J Med Genet A ; 173(11): 3070-3074, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28898547

ABSTRACT

Isolated congenital diaphragmatic hernia is often a sporadic event with a low recurrence risk. However, underlying genetic etiologies, such as chromosome anomalies or single gene disorders, are identified in a small number of individuals. We describe two fetuses with a unique pattern of multiple congenital anomalies, including diaphragmatic hernia, short bowel and asplenia, born to first-cousin parents. Whole exome sequencing showed that both were homozygous for a missense variant, c.950A>C, predicting p.Asp317Ala, in the H.20-Like Homeobox 1 (HLX1) gene. HLX is a homeobox transcription factor gene which is relatively conserved across species. Hlx homozygous null mice have a short bowel and reduced muscle cells in the diaphragm, closely resembling the anomalies in the two fetuses and we therefore suggest that the HLX mutation in this family could explain the fetal findings.


Subject(s)
Hernias, Diaphragmatic, Congenital/genetics , Heterotaxy Syndrome/genetics , Homeodomain Proteins/genetics , Short Bowel Syndrome/genetics , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Animals , Digestive System Abnormalities/genetics , Digestive System Abnormalities/physiopathology , Genetic Predisposition to Disease , Hernias, Diaphragmatic, Congenital/physiopathology , Heterotaxy Syndrome/physiopathology , Humans , Mice , Mutation , Sequence Analysis, DNA , Short Bowel Syndrome/physiopathology , Exome Sequencing
12.
Biochim Biophys Acta ; 1839(7): 546-58, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24815547

ABSTRACT

Pax3 encodes a paired-box transcription factor with key roles in neural crest and neural tube ontogenesis. Robust control of Pax3 neural expression is ensured by two redundant sets of cis-regulatory modules (CRMs) that integrate anterior-posterior (such as Wnt-ßCatenin signaling) as well as dorsal-ventral (such as Shh-Gli signaling) instructive cues. In previous work, we sought to characterize the Wnt-mediated regulation of Pax3 expression and identified the Cdx transcription factors (Cdx1/2/4) as critical intermediates in this process. We identified the neural crest enhancer-2 (NCE2) from the 5'-flanking region of Pax3 as a Cdx-dependent CRM that recapitulates the restricted expression of Pax3 in the mouse caudal neuroectoderm. While this is consistent with a key role in relaying the inductive signal from posteriorizing Wnt ligands, the broad expression of Cdx proteins in the tailbud region is not consistent with the restricted activity of NCE2. This implies that other positive and/or negative inputs are required and, here, we report a novel role for the transcription factor Zic2 in this regulation. Our data strongly suggests that Zic2 is involved in the induction (as a direct Pax3NCE2 activator and Cdx neural cofactor) as well as the maintenance of Pax3 dorsal restriction (as a target of the ventral Shh repressive input). We also provide evidence that the inductive Cdx-Zic2 interaction is integrated on NCE2 with a positive input from the neural-specific transcription factor Sox2. Altogether, our data provide important mechanistic insights into the coordinated integration of different signaling pathways on a short Pax3 CRM.


Subject(s)
Enhancer Elements, Genetic , Neural Tube/growth & development , Paired Box Transcription Factors/genetics , Animals , Gene Expression Regulation, Developmental , Hedgehog Proteins , Humans , Mice , Neural Crest/growth & development , Neural Tube/metabolism , PAX3 Transcription Factor , Paired Box Transcription Factors/biosynthesis , SOXB1 Transcription Factors/genetics , Signal Transduction/genetics , Wnt Signaling Pathway/genetics
13.
Sci Rep ; 14(1): 11063, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744932

ABSTRACT

Researchers who aim to globally analyze the gastrointestinal immune system via flow cytometry have many protocol options to choose from, with specifics generally tied to gut wall layers of interest. To get a clearer idea of the approach we should use on full-thickness colon samples from mice, we first undertook a systematic comparison of three tissue dissociation techniques: two based on enzymatic cocktails and the other one based on manual crushing. Using flow cytometry panels of general markers of lymphoid and myeloid cells, we found that the presence of cell-surface markers and relative cell population frequencies were more stable with the mechanical method. Both enzymatic approaches were associated with a marked decrease of several cell-surface markers. Using mechanical dissociation, we then developed two minimally overlapping panels, consisting of a total of 26 antibodies, for serial profiling of lymphoid and myeloid lineages from the mouse colon in greater detail. Here, we highlight how we accurately delineate these populations by manual gating, as well as the reproducibility of our panels on mouse spleen and whole blood. As a proof-of-principle of the usefulness of our general approach, we also report segment- and life stage-specific patterns of immune cell profiles in the colon. Overall, our data indicate that mechanical dissociation is more suitable and efficient than enzymatic methods for recovering immune cells from all colon layers at once. Additionally, our panels will provide researchers with a relatively simple tool for detailed immune cell profiling in the murine gastrointestinal tract, regardless of life stage or experimental conditions.


Subject(s)
Adaptive Immunity , Colon , Flow Cytometry , Immunity, Innate , Animals , Colon/immunology , Colon/metabolism , Mice , Flow Cytometry/methods , Mice, Inbred C57BL , Myeloid Cells/immunology , Myeloid Cells/metabolism
14.
J Bone Miner Res ; 39(4): 498-512, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38477756

ABSTRACT

Mutations in the Chromodomain helicase DNA-binding protein 7 - coding gene (CHD7) cause CHARGE syndrome (CS). Although craniofacial and skeletal abnormalities are major features of CS patients, the role of CHD7 in bone and cartilage development remain largely unexplored. Here, using a zebrafish (Danio rerio) CS model, we show that chd7-/- larvae display abnormal craniofacial cartilage development and spinal deformities. The craniofacial and spine defects are accompanied by a marked reduction of bone mineralization. At the molecular level, we show that these phenotypes are associated with significant reduction in the expression levels of osteoblast differentiation markers. Additionally, we detected a marked depletion of collagen 2α1 in the cartilage of craniofacial regions and vertebrae, along with significantly reduced number of chondrocytes. Chondrogenesis defects are at least in part due to downregulation of htr2b, which we found to be also dysregulated in human cells derived from an individual with CHD7 mutation-positive CS. Overall, this study thus unveils an essential role for CHD7 in cartilage and bone development, with potential clinical relevance for the craniofacial defects associated with CS.


Patients with CHARGE syndrome exhibit skeletal defects. CHARGE syndrome is primarily caused by mutations in the chromatin remodeler-coding gene CHD7. To investigate the poorly characterized role of CHD7 in cartilage and bone development, here, we examine the craniofacial and bone anomalies in a zebrafish chd7-/- mutant model. We find that zebrafish mutant larvae exhibit striking dysmorphism of craniofacial structures and spinal deformities. Notably, we find a significant reduction in osteoblast, chondrocyte, and collagen matrix markers. This work provides important insights to improve our understanding of the role of chd7 in skeletal development.


Subject(s)
Cartilage , DNA Helicases , Zebrafish Proteins , Zebrafish , Animals , Humans , Cartilage/metabolism , CHARGE Syndrome/genetics , CHARGE Syndrome/metabolism , CHARGE Syndrome/pathology , Chondrocytes/metabolism , Chondrogenesis/genetics , Collagen Type II/metabolism , Collagen Type II/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Skull/metabolism , Zebrafish/metabolism , Zebrafish/genetics , Zebrafish/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
15.
Genesis ; 51(11): 777-84, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23913642

ABSTRACT

Several genetically modified mouse models have been generated in order to drive expression of the Cre recombinase in the neuroectoderm. However, none of them specifically targets the posterior neural plate during neurulation. To fill this gap, we have generated a new transgenic mouse line in which Cre expression is controlled by a neural specific enhancer (NSE) from the Caudal-related homeobox 2 (Cdx2) locus. Analyses of Cre activity via breeding with R26R-YFP reporter mice have indicated that the Cdx2NSE-Cre mouse line allows for recombination of LoxP sites in most cells of the posterior neural plate as soon as from the head fold stage. Detailed examination of double-transgenic embryos has revealed that this novel Cre-driver line allows targeting the entire posterior neural tube with an anterior limit in the caudal hindbrain. Of note, the Cdx2NSE regulatory sequences direct Cre expression along the whole dorso-ventral axis (including pre-migratory neural crest cells) and, accordingly, YFP fluorescence has been also observed in multiple non-cranial neural crest derivatives of double-transgenic embryos. Therefore, we believe that the Cdx2NSE-Cre mouse line represents an important novel genetic tool for the study of early events occurring in the caudal neuroectoderm during the formation of both the central and the peripheral nervous systems.


Subject(s)
Enhancer Elements, Genetic , Homeodomain Proteins/metabolism , Integrases/metabolism , Mice, Transgenic , Neural Plate/embryology , Neural Tube/embryology , Transcription Factors/metabolism , Animals , Bacterial Proteins/metabolism , CDX2 Transcription Factor , Embryo, Mammalian , Genes, Reporter , Homeodomain Proteins/genetics , Integrases/genetics , Luminescent Proteins/metabolism , Mice , Models, Animal , Neural Crest/cytology , Neural Crest/embryology , Neural Plate/metabolism , Transcription Factors/genetics
16.
J Biol Chem ; 287(20): 16623-35, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22457346

ABSTRACT

One of the earliest events in neural crest development takes place at the neural plate border and consists in the induction of Pax3 expression by posteriorizing Wnt·ß-catenin signaling. The molecular mechanism of this regulation is not well understood, but several observations suggest a role for posteriorizing Cdx transcription factors (Cdx1/2/4) in this process. Cdx genes are known as integrators of posteriorizing signals from Wnt, retinoic acid, and FGF pathways. In this work, we report that Wnt-mediated regulation of murine Pax3 expression is indirect and involves Cdx proteins as intermediates. We show that Pax3 transcripts co-localize with Cdx proteins in the posterior neurectoderm and that neural Pax3 expression is reduced in Cdx1-null embryos. Using Wnt3a-treated P19 cells and neural crest-derived Neuro2a cells, we demonstrate that Pax3 expression is induced by the Wnt-Cdx pathway. Co-transfection analyses, electrophoretic mobility shift assays, chromatin immunoprecipitation, and transgenic studies further indicate that Cdx proteins operate via direct binding to an evolutionarily conserved neural crest enhancer of the Pax3 proximal promoter. Taken together, these results suggest a novel neural function for Cdx proteins within the gene regulatory network controlling neural crest development.


Subject(s)
Enhancer Elements, Genetic/physiology , Homeodomain Proteins/metabolism , Neural Crest/embryology , Paired Box Transcription Factors/metabolism , Transcription Factors/metabolism , Wnt Signaling Pathway/physiology , Animals , CDX2 Transcription Factor , Epidermal Growth Factor/genetics , Epidermal Growth Factor/metabolism , Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/genetics , Mice , Mice, Knockout , PAX3 Transcription Factor , Paired Box Transcription Factors/genetics , Transcription Factors/genetics
17.
Dev Dyn ; 241(7): 1192-204, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22539273

ABSTRACT

BACKGROUND: The SRY/Sry gene is expressed in pre-Sertoli cells of the male genital ridge and functions as the mammalian testis determining factor (TDF). In addition, expression of SRY/Sry outside the genital ridge has been reported, including preimplantation embryos, although the functional significance of this is not well understood. RESULTS: Using Cre-mediated lineage studies and transgenic reporter mouse models, we now show that promoter sequences of human, pig and mouse SRY drive robust reporter gene expression in epiblast cells of peri-implantation embryos between embryonic day (E) 4.5 and E6.5. Analysis of endogenous Sry expression revealed that linear transcripts are produced by means of multiple polyadenylation sites in E4.5 embryos. Within the epiblast, SRY reporter expression mimics the expression seen using a Gata4 reporter model, but is dissimilar to that seen using an Oct4 reporter model. In addition, we report that overexpression of mouse Sry in embryonic stem cells leads to down-regulation of the core pluripotency markers Sox2 and Nanog. CONCLUSION: We propose that SRY/Sry may function as a male-specific maturation factor in the peri-implantation mammalian embryo, providing a genetic mechanism to help explain the observation that male embryos are developmentally more advanced compared with female embryos, and suggesting a role for SRY beyond that of TDF.


Subject(s)
Blastocyst/metabolism , Sex-Determining Region Y Protein/metabolism , Animals , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Male , Mice , Mice, Transgenic , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Pregnancy , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/physiology , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Sex-Determining Region Y Protein/genetics , Swine
18.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37221016

ABSTRACT

CHARGE syndrome is a neural crest-related disorder mainly caused by mutation of the chromatin remodeler-coding gene CHD7 Alternative causes include mutation of other chromatin and/or splicing factors. One of these additional players is the poorly characterized FAM172A, which we previously found in a complex with CHD7 and the small RNA-binding protein AGO2 at the chromatin-spliceosome interface. Focusing on the FAM172A-AGO2 interplay, we now report that FAM172A is a direct binding partner of AGO2 and, as such, one of the long sought-after regulators of AGO2 nuclear import. We show that this FAM172A function mainly relies on its classical bipartite nuclear localization signal and associated canonical importin-α/ß pathway, being enhanced by CK2-induced phosphorylation and abrogated by a CHARGE syndrome-associated missense mutation. Overall, this study thus strengthens the notion that noncanonical nuclear functions of AGO2 and associated regulatory mechanisms might be clinically relevant.


Subject(s)
CHARGE Syndrome , Humans , Active Transport, Cell Nucleus , Chromatin , Mutation, Missense , Proteins
19.
Pigment Cell Melanoma Res ; 35(5): 506-516, 2022 09.
Article in English | MEDLINE | ID: mdl-35816394

ABSTRACT

Waardenburg syndrome type 4 (WS4) combines abnormal development of neural crest cell (NCC)-derived melanocytes (causing depigmentation and inner ear dysfunction) and enteric nervous system (causing aganglionic megacolon). The full spectrum of WS4 phenotype is present in Spot mice, in which an insertional mutation close to a silencer element leads to NCC-specific upregulation of the transcription factor-coding gene Nr2f1. These mice were previously found to develop aganglionic megacolon because of NR2F1-induced premature differentiation of enteric neural progenitors into enteric glia. Intriguingly, this prior work also showed that inner ear dysfunction in Spot mutants specifically affects balance but not hearing, consistent with the absence of melanocytes in the vestibule only. Here, we report an analysis of the effect of Nr2f1 upregulation on the development of both inner ear and skin melanocytes, also taking in consideration their origin relative to the dorsolateral and ventral NCC migration pathways. In the trunk, we found that NR2F1 overabundance in Spot NCCs forces dorso-laterally migrating melanoblasts to abnormally adopt a Schwann cell precursor (SCP) fate and conversely prevents ventrally migrating SCPs to normally adopt a melanoblast fate. In the head, Nr2f1 upregulation appears not to be uniform, which might explain why SCP-derived melanocytes do colonize the cochlea while non-SCP-derived melanocytes cannot reach the vestibule. Collectively, these data point to a key role for NR2F1 in the control of SCP-vs-melanocyte fate choice and unveil a new pathogenic mechanism for WS4. Moreover, our data argue against the proposed existence of a transit-amplifying compartment of melanocyte precursors in hair follicles.


Subject(s)
Hirschsprung Disease , Waardenburg Syndrome , Animals , Cell Differentiation/genetics , Hirschsprung Disease/metabolism , Hirschsprung Disease/pathology , Melanocytes/metabolism , Mice , Neural Crest/metabolism , Schwann Cells , Waardenburg Syndrome/genetics
20.
Trends Mol Med ; 27(5): 451-468, 2021 05.
Article in English | MEDLINE | ID: mdl-33627291

ABSTRACT

Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.


Subject(s)
Nervous System Malformations/prevention & control , Neural Crest , Animals , Cell Transplantation , Congenital Abnormalities , Humans , Models, Animal , Neural Crest/cytology , Neural Crest/embryology , Neural Crest/metabolism , Neural Crest/pathology , Regenerative Medicine/methods , Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL