Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Opt Express ; 26(3): 3568-3576, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401884

ABSTRACT

Avalanche photodiodes (APDs) with thin avalanche regions have shown low excess noise characteristics and high gain-bandwidth products, so they are suited for long-haul optical communications. In this work, we investigated how carrier injection profile affects the avalanche gain and excess noise factors of Al0.85Ga0.15As0.56Sb0.44 (lattice-matched to InP substrates) p-i-n and n-i-p diodes with total depletion widths of 145-240 nm. Different carrier injection profiles were achieved by using light with wavelengths of 420, 543 and 633nm. For p-i-n diodes, shorter wavelength light produces higher avalanche gains for a given reverse bias and lower excess noise factors at a given gain, compared to longer wavelength light. Thus, using 420 nm light on the p-i-n diodes, corresponding to pure electron injection conditions, gave the highest gain and lowest excess noise. In n-i-p diodes, pure hole injection yields significantly lower gain and higher excess noise, compared to mixed carrier injection. These show that the electron ionization coefficient, α, is higher than the hole ionization coefficient, ß. Using pure electron injection, excess noise factor characteristics with effective ionization ratios, keff, of 0.08-0.1 were obtained. This is significantly lower than those of InP and In0.52Al0.48As, the commonly used avalanche materials combined with In0.53Ga0.47As absorber. The data reported in this paper is available from the ORDA digital repository (DOI: 10.15131/shef. DATA: 5787318).

SELECTION OF CITATIONS
SEARCH DETAIL