Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Psychiatry ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107582

ABSTRACT

Neuroimaging research has uncovered a multitude of neural abnormalities associated with psychopathology, but few prediction-based studies have been conducted during adolescence, and even fewer used neurobiological features that were extracted across multiple neuroimaging modalities. This gap in the literature is critical, as deriving accurate brain-based models of psychopathology is an essential step towards understanding key neural mechanisms and identifying high-risk individuals. As such, we trained adaptive tree-boosting algorithms on multimodal neuroimaging features from the Lifespan Human Connectome Developmental (HCP-D) sample that contained 956 participants between the ages of 8 to 22 years old. Our feature space consisted of 1037 anatomical, 1090 functional, and 192 diffusion MRI features, which were used to derive models that separately predicted internalizing symptoms, externalizing symptoms, and the general psychopathology factor. We found that multimodal models were the most accurate, but all brain-based models of psychopathology yielded out-of-sample predictions that were weakly correlated with actual symptoms (r2 < 0.15). White matter microstructural properties, including orientation dispersion indices and intracellular volume fractions, were the most predictive of general psychopathology, followed by cortical thickness and functional connectivity. Spatially, the most predictive features of general psychopathology were primarily localized within the default mode and dorsal attention networks. These results were mostly consistent across all dimensions of psychopathology, except orientation dispersion indices and the default mode network were not as heavily weighted in the prediction of internalizing and externalizing symptoms. Taken with prior literature, it appears that neurobiological features are an important part of the equation for predicting psychopathology but relying exclusively on neural markers is clearly not sufficient, especially among adolescent samples with subclinical symptoms. Consequently, risk factor models of psychopathology may benefit from incorporating additional sources of information that have also been shown to explain individual differences, such as psychosocial factors, environmental stressors, and genetic vulnerabilities.

2.
Nat Methods ; 18(7): 775-778, 2021 07.
Article in English | MEDLINE | ID: mdl-34155395

ABSTRACT

Diffusion-weighted magnetic resonance imaging (dMRI) is the primary method for noninvasively studying the organization of white matter in the human brain. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing on a diverse set of software suites to capitalize on their complementary strengths, QSIPrep facilitates the implementation of best practices for processing of diffusion images.


Subject(s)
Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Software , Humans , Programming Languages , Workflow
3.
Nat Commun ; 14(1): 8411, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110396

ABSTRACT

Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across matched discovery (n = 3525) and replication (n = 3447) samples, the total cortical representation of fronto-parietal PFNs positively correlates with general cognition. Cross-validated ridge regressions trained on PFN topography predict cognition in unseen data across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.


Subject(s)
Individuality , Magnetic Resonance Imaging , Humans , Adolescent , Magnetic Resonance Imaging/methods , Brain , Cognition , Neuropsychological Tests , Brain Mapping
4.
Biol Psychiatry ; 92(12): 973-983, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35927072

ABSTRACT

BACKGROUND: The spatial layout of large-scale functional brain networks differs between individuals and is particularly variable in the association cortex, implicated in a broad range of psychiatric disorders. However, it remains unknown whether this variation in functional topography is related to major dimensions of psychopathology in youth. METHODS: The authors studied 790 youths ages 8 to 23 years who had 27 minutes of high-quality functional magnetic resonance imaging data as part of the Philadelphia Neurodevelopmental Cohort. Four correlated dimensions were estimated using a confirmatory correlated traits factor analysis on 112 item-level clinical symptoms, and one overall psychopathology factor with 4 orthogonal dimensions were extracted using a confirmatory factor analysis. Spatially regularized nonnegative matrix factorization was used to identify 17 individual-specific functional networks for each participant. Partial least square regression with split-half cross-validation was conducted to evaluate to what extent the topography of personalized functional networks encodes major dimensions of psychopathology. RESULTS: Personalized functional network topography significantly predicted unseen individuals' major dimensions of psychopathology, including fear, psychosis, externalizing, and anxious-misery. Reduced representation of association networks was among the most important features for the prediction of all 4 dimensions. Further analysis revealed that personalized functional network topography predicted overall psychopathology (r = 0.16, permutation testing p < .001), which drove prediction of the 4 correlated dimensions. CONCLUSIONS: These results suggest that individual differences in functional network topography in association networks is related to overall psychopathology in youth. Such results underscore the importance of considering functional neuroanatomy for personalized diagnostics and therapeutics in psychiatry.


Subject(s)
Individuality , Mental Disorders , Adolescent , Humans , Child , Young Adult , Adult , Psychopathology , Cerebral Cortex , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
5.
Cell Rep ; 38(13): 110576, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354053

ABSTRACT

The functions of the human brain are metabolically expensive and reliant on coupling between cerebral blood flow (CBF) and neural activity, yet how this coupling evolves over development remains unexplored. Here, we examine the relationship between CBF, measured by arterial spin labeling, and the amplitude of low-frequency fluctuations (ALFF) from resting-state magnetic resonance imaging across a sample of 831 children (478 females, aged 8-22 years) from the Philadelphia Neurodevelopmental Cohort. We first use locally weighted regressions on the cortical surface to quantify CBF-ALFF coupling. We relate coupling to age, sex, and executive functioning with generalized additive models and assess network enrichment via spin testing. We demonstrate regionally specific changes in coupling over age and show that variations in coupling are related to biological sex and executive function. Our results highlight the importance of CBF-ALFF coupling throughout development; we discuss its potential as a future target for the study of neuropsychiatric diseases.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Adolescent , Adult , Brain/physiology , Brain Mapping/methods , Cerebrovascular Circulation/physiology , Child , Female , Humans , Magnetic Resonance Imaging/methods , Spin Labels , Young Adult
6.
Nat Commun ; 13(1): 2647, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551181

ABSTRACT

The brain is organized into networks at multiple resolutions, or scales, yet studies of functional network development typically focus on a single scale. Here, we derive personalized functional networks across 29 scales in a large sample of youths (n = 693, ages 8-23 years) to identify multi-scale patterns of network re-organization related to neurocognitive development. We found that developmental shifts in inter-network coupling reflect and strengthen a functional hierarchy of cortical organization. Furthermore, we observed that scale-dependent effects were present in lower-order, unimodal networks, but not higher-order, transmodal networks. Finally, we found that network maturation had clear behavioral relevance: the development of coupling in unimodal and transmodal networks are dissociably related to the emergence of executive function. These results suggest that the development of functional brain networks align with and refine a hierarchy linked to cognition.


Subject(s)
Brain , Magnetic Resonance Imaging , Adolescent , Adult , Brain Mapping/methods , Child , Cognition , Executive Function , Humans , Magnetic Resonance Imaging/methods , Nerve Net , Young Adult
7.
Dev Cogn Neurosci ; 43: 100788, 2020 06.
Article in English | MEDLINE | ID: mdl-32510347

ABSTRACT

Diffusion weighted imaging (DWI) has advanced our understanding of brain microstructure evolution over development. Recently, the use of multi-shell diffusion imaging sequences has coincided with advances in modeling the diffusion signal, such as Neurite Orientation Dispersion and Density Imaging (NODDI) and Laplacian-regularized Mean Apparent Propagator MRI (MAPL). However, the relative utility of recently-developed diffusion models for understanding brain maturation remains sparsely investigated. Additionally, despite evidence that motion artifact is a major confound for studies of development, the vulnerability of metrics derived from contemporary models to in-scanner motion has not been described. Accordingly, in a sample of 120 youth and young adults (ages 12-30) we evaluated metrics derived from diffusion tensor imaging (DTI), NODDI, and MAPL for associations with age and in-scanner head motion at multiple scales. Specifically, we examined mean white matter values, white matter tracts, white matter voxels, and connections in structural brain networks. Our results revealed that multi-shell diffusion imaging data can be leveraged to robustly characterize neurodevelopment, and demonstrate stronger age effects than equivalent single-shell data. Additionally, MAPL-derived metrics were less sensitive to the confounding effects of head motion. Our findings suggest that multi-shell imaging data and contemporary modeling techniques confer important advantages for studies of neurodevelopment.


Subject(s)
Brain/growth & development , Diffusion Tensor Imaging/methods , Adolescent , Adult , Child , Female , Humans , Male , Young Adult
8.
Sci Rep ; 8(1): 14032, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30232351

ABSTRACT

Depression is a leading cause of disability and is commonly comorbid with obesity. Emotion regulation is impaired in both depression and obesity. In this study, we aimed to explicate multi-unit relations among brain connectivity, behavior, and self-reported trait measures related to emotion regulation in a comorbid depressed and obese sample (N = 77). Brain connectivity was quantified as fractional anisotropy (FA) of the uncinate fasciculi, a white matter tract implicated in emotion regulation and in depression. Use of emotion regulation strategies was assessed using the Emotion Regulation Questionnaire (ERQ). We additionally measured reaction times to identifying negative emotions, a behavioral index of depression-related emotion processing biases. We found that greater right uncinate fasciculus FA was related to greater usage of suppression (r = 0.27, p = 0.022), and to faster reaction times to identifying negative emotions, particularly sadness (r = -0.30, p = 0.010) and fear (r = -0.35, p = 0.003). These findings suggest that FA of the right uncinate fasciculus corresponds to maladaptive emotion regulation strategies and emotion processing biases that are relevant to co-occurring depression and obesity. Interventions that consider these multi-unit associations may prove to be useful for subtyping and improving clinical outcomes for comorbid depression and obesity.


Subject(s)
Depression/diagnostic imaging , Depression/psychology , Obesity/diagnostic imaging , Obesity/psychology , Adult , Aged , Comorbidity , Connectome/methods , Emotions , Female , Humans , Male , Middle Aged , Reaction Time , Self Report , White Matter/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL