Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Curr Microbiol ; 80(1): 20, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36460801

ABSTRACT

In the present study, a comprehensive proteomic analysis of Brucella melitensis (B. melitensis) strain ATCC23457 was carried out to investigate proteome alterations in response to in vitro-induced nutrient stress. Our analysis resulted in the identification of 2440 proteins, including 365 hypothetical proteins and 850 potentially secretory proteins representing ~77.8% of the B. melitensis proteome. Utilizing a proteogenomics approach, we provide translational evidence for eight novel putative protein-coding genes and confirmed the coding potential of 31 putatively annotated pseudogenes, thus refining the existing genome annotation. Further, using a label-free quantitative proteomic approach, new insights into the cellular processes governed by nutrient stress, including enrichment of amino acid metabolism (E), transcription (K), energy production and conversion (C), and biogenesis (J) processes were obtained. Pathway analysis revealed the enrichment of survival and homeostasis maintenance pathways, including type IV secretion system, nitrogen metabolism, and urease pathways in response to nutrient limitation. To conclude, our analysis demonstrates the utility of in-depth proteomic analysis in enabling improved annotation of the B. melitensis genome. Further, our results indicate that B. melitensis undergoes metabolic adaptations during nutrient stress similar to other Brucella. sp, and adapts itself for long-term persistence and survival.


Subject(s)
Brucella melitensis , Proteomics , Brucella melitensis/genetics , Proteome , Acclimatization , Nutrients
2.
Proteomics ; 20(19-20): e2000170, 2020 10.
Article in English | MEDLINE | ID: mdl-32846045

ABSTRACT

The Triton X-114-based solubilization and temperature-dependent phase separation of proteins is used for subcellular fractionation where, aqueous, detergent, and pellet fractions represents cytoplasmic, outer membrane (OM), and inner membrane proteins, respectively. Mass spectrometry-based proteomic analysis of Triton X-114 fractions of proteomic analysis of Leptospira interrogans identified 2957 unique proteins distributed across the fractions. The results are compared with bioinformatics predictions on their subcellular localization and pathogenic nature. Analysis of the distribution of proteins across the Triton X-114 fractions with the predicted characteristics is performed based on "number" of unique type of proteins, and "quantity" which represents the amount of unique protein. The highest number of predicted outer membrane proteins (OMPs) and pathogenic proteins are found in aqueous and pellet fractions, whereas detergent fraction representing the OM has the highest quantity of OMPs and pathogenic proteins though lower in number than the aqueous and pellet fractions. This leaves the possibility of an upsurge in pathogenic proteins and OMPs on the OM under pathogenic conditions suggesting their potential use to combat leptospirosis. Further, the Triton X-114 subcellular fractions are more correlated to enrichment of pathogenic proteins predicted by MP3 software than predicted localization.


Subject(s)
Leptospira interrogans , Octoxynol , Proteomics , Bacterial Outer Membrane Proteins , Detergents , Proteome
3.
Genome Res ; 27(1): 133-144, 2017 01.
Article in English | MEDLINE | ID: mdl-28003436

ABSTRACT

Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted "noncoding RNAs" to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes.


Subject(s)
Genome/genetics , High-Throughput Nucleotide Sequencing/methods , Molecular Sequence Annotation , Transcriptome/genetics , Animals , Anopheles/genetics , Exons/genetics , Gene Expression Profiling , Proteome/genetics , Proteomics
4.
Gastric Cancer ; 23(5): 796-810, 2020 09.
Article in English | MEDLINE | ID: mdl-32333232

ABSTRACT

BACKGROUND: Phosphorylation is an important regulatory mechanism of protein activity in cells. Studies in various cancers have reported perturbations in kinases resulting in aberrant phosphorylation of oncoproteins and tumor suppressor proteins. METHODS: In this study, we carried out quantitative phosphoproteomic analysis of gastric cancer tissues and corresponding xenograft samples. Using these data, we employed bioinformatics analysis to identify aberrant signaling pathways. We further performed molecular inhibition and silencing of the upstream regulatory kinase in gastric cancer cell lines and validated its effect on cellular phenotype. Through an ex vivo technology utilizing patient tumor and blood sample, we sought to understand the therapeutic potential of the kinase by recreating the tumor microenvironment. RESULTS: Using mass spectrometry-based high-throughput analysis, we identified 1,344 phosphosites and 848 phosphoproteins, including differential phosphorylation of 177 proteins (fold change cut-off ≥ 1.5). Our data showed that a subset of differentially phosphorylated proteins belonged to splicing machinery. Pathway analysis highlighted Cdc2-like kinase (CLK1) as upstream kinase. Inhibition of CLK1 using TG003 and CLK1 siRNA resulted in a decreased cell viability, proliferation, invasion and migration as well as modulation in the phosphorylation of SRSF2. Ex vivo experiments which utilizes patient's own tumor and blood to recreate the tumor microenvironment validated the use of CLK1 as a potential target for gastric cancer treatment. CONCLUSIONS: Our data indicates that CLK1 plays a crucial role in the regulation of splicing process in gastric cancer and that CLK1 can act as a novel therapeutic target in gastric cancer.


Subject(s)
Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Proteome/metabolism , Stomach Neoplasms/pathology , Animals , Apoptosis , Biomarkers, Tumor , Cell Movement , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, SCID , Neoplasm Invasiveness , Phosphorylation , Prognosis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Proteome/analysis , RNA, Small Interfering/genetics , Stomach Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Nature ; 509(7502): 575-81, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24870542

ABSTRACT

The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.


Subject(s)
Proteome/metabolism , Proteomics , Adult , Cells, Cultured , Databases, Protein , Fetus/metabolism , Fourier Analysis , Gene Expression Profiling , Genome, Human/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Internet , Mass Spectrometry , Molecular Sequence Annotation , Open Reading Frames/genetics , Organ Specificity , Protein Biosynthesis , Protein Isoforms/analysis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Sorting Signals , Protein Transport , Proteome/analysis , Proteome/chemistry , Proteome/genetics , Pseudogenes/genetics , RNA, Untranslated/genetics , Reproducibility of Results , Untranslated Regions/genetics
6.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383959

ABSTRACT

CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate or regulate the responses of various immune cells. The activation and functional status of CD4+ T cells is important for adequate responses to pathogen infections but has also been associated with auto-immune disorders and survival in several cancers. In the current study, we carried out a label-free high-resolution FTMS-based proteomic profiling of resting and T cell receptor-activated (72 h) primary human CD4+ T cells from peripheral blood of healthy donors as well as SUP-T1 cells. We identified 5237 proteins, of which significant alterations in the levels of 1119 proteins were observed between resting and activated CD4+ T cells. In addition to identifying several known T-cell activation-related processes altered expression of several stimulatory/inhibitory immune checkpoint markers between resting and activated CD4+ T cells were observed. Network analysis further revealed several known and novel regulatory hubs of CD4+ T cell activation, including IFNG, IRF1, FOXP3, AURKA, and RIOK2. Comparison of primary CD4+ T cell proteomic profiles with human lymphoblastic cell lines revealed a substantial overlap, while comparison with mouse CD+ T cell data suggested interspecies proteomic differences. The current dataset will serve as a valuable resource to the scientific community to compare and analyze the CD4+ proteome.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Lymphocyte Activation , Proteome , Proteomics , Adaptive Immunity , Animals , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Line , Humans , Immune Checkpoint Proteins/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mass Spectrometry , Mice , Proteomics/methods , Signal Transduction
7.
Int J Mol Sci ; 20(9)2019 Apr 27.
Article in English | MEDLINE | ID: mdl-31035605

ABSTRACT

Dual specificity phosphatases (DUSPs) have a well-known role as regulators of the immune response through the modulation of mitogen-activated protein kinases (MAPKs). Yet the precise interplay between the various members of the DUSP family with protein kinases is not well understood. Recent multi-omics studies characterizing the transcriptomes and proteomes of immune cells have provided snapshots of molecular mechanisms underlying innate immune response in unprecedented detail. In this study, we focus on deciphering the interplay between members of the DUSP family with protein kinases in immune cells using publicly available omics datasets. Our analysis resulted in the identification of potential DUSP-mediated hub proteins including MAPK7, MAPK8, AURKA, and IGF1R. Furthermore, we analyzed the association of DUSP expression with TLR4 signaling and identified VEGF, FGFR, and SCF-KIT pathway modules to be regulated by the activation of TLR4 signaling. Finally, we identified several important kinases including LRRK2, MAPK8, and cyclin-dependent kinases as potential DUSP-mediated hubs in TLR4 signaling. The findings from this study have the potential to aid in the understanding of DUSP signaling in the context of innate immunity. Further, this will promote the development of therapeutic modalities for disorders with aberrant DUSP signaling.


Subject(s)
Dual-Specificity Phosphatases/metabolism , Immunomodulation , Protein Kinases/metabolism , Signal Transduction , Animals , Biological Evolution , Blood Cells/metabolism , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Mice , Protein Interaction Mapping , Protein Interaction Maps , Proteome , Proteomics/methods
8.
Biochim Biophys Acta Proteins Proteom ; 1866(5-6): 712-721, 2018.
Article in English | MEDLINE | ID: mdl-29654978

ABSTRACT

Leptospira, the causative agent of leptospirosis is known to have many proteases with potential to degrade extracellular matrix. However, a multipronged approach to identify, classify, characterize and elucidate their role has not been attempted. Our proteomic approach using high-resolution LC-MS/MS analysis of Triton X-114 fractions of Leptospira interrogans resulted in the identification of 104 proteases out of 130 proteases predicted by MEROPS. In Leptospira approximately 3.5% of the genome complements for proteases, which include catalytic types of metallo-, serine-, cysteine-, aspartic-, threonine- and asparagine- peptidases. Comparison of proteases from different serovars revealed that M04, M09B, M14A, M75, M28A, A01 and U73 protease families are exclusively present in pathogenic form. The M23 and S33 protease families are represented with >14 members in Leptospira. The differential expression under physiological temperature (37 °C) and osmolarity (300 mOsM) showed that proteases belonging to the catalytic type of Metallo-peptidases are upregulated significantly in pathogenic conditions. In silico prediction and characterization of the proteases revealed that several proteases are membrane anchored and secretory, classical as well as non-classical system. The study demonstrates the diversity and complexity of proteases, while maintaining conservation across the serovars in Leptospira and their differential expression under pathogenic conditions.


Subject(s)
Bacterial Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Leptospira interrogans/enzymology , Peptide Hydrolases/metabolism , Proteomics/methods , Bacterial Proteins/genetics , Chromatography, Liquid , Computational Biology , Enzyme Stability , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Leptospira interrogans/genetics , Osmolar Concentration , Peptide Hydrolases/genetics , Phylogeny , Substrate Specificity , Tandem Mass Spectrometry , Temperature
9.
Proteomics ; 17(6)2017 03.
Article in English | MEDLINE | ID: mdl-28000977

ABSTRACT

Chronic exposure to arsenic is associated with dermatological and nondermatological disorders. Consumption of arsenic-contaminated drinking water results in accumulation of arsenic in liver, spleen, kidneys, lungs, and gastrointestinal tract. Although arsenic is cleared from these sites, a substantial amount of residual arsenic is left in keratin-rich tissues including skin. Epidemiological studies suggest the association of skin cancer upon arsenic exposure, however, the mechanism of arsenic-induced carcinogenesis is not completely understood. We developed a cell line based model to understand the molecular mechanisms involved in arsenic-mediated toxicity and carcinogenicity. Human skin keratinocyte cell line, HaCaT, was chronically exposed to 100 nM sodium arsenite over a period of 6 months. We observed an increase in basal ROS levels in arsenic-exposed cells. SILAC-based quantitative proteomics approach resulted in identification of 2111 proteins of which 42 proteins were found to be overexpressed and 54 downregulated (twofold) upon chronic arsenic exposure. Our analysis revealed arsenic-induced overexpression of aldo-keto reductase family 1 member C2 (AKR1C2), aldo-keto reductase family 1 member C3 (AKR1C3), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H dehydrogenase [quinone] 1 (NQO1) among others. We observed downregulation of several members of the plakin family including periplakin (PPL), envoplakin (EVPL), and involucrin (IVL) that are essential for terminal differentiation of keratinocytes. MRM and Western blot analysis confirmed differential expression of several candidate proteins. Our study provides insights into molecular alterations upon chronic arsenic exposure on skin.


Subject(s)
Amino Acids/metabolism , Arsenic/toxicity , Isotope Labeling/methods , Keratinocytes/metabolism , Proteomics/methods , Skin/cytology , Amino Acid Sequence , Blotting, Western , Cell Line , Computational Biology , Epithelium/drug effects , Epithelium/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Keratinocytes/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Proteome/chemistry , Proteome/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Reproducibility of Results , Signal Transduction/drug effects
10.
PLoS Pathog ; 11(12): e1005346, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26714015

ABSTRACT

Epstein-Barr virus (EBV) is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1). Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR), mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC) indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been deposited in the ProteomeXchange with identifier PXD002411 (http://proteomecentral.proteomexchange.org/dataset/PXD002411).


Subject(s)
DNA Damage/physiology , Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/metabolism , Mitosis/physiology , Protein Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , Virus Replication/physiology , Amino Acid Sequence , Cell Line , Chromatography, Liquid , Gene Expression Regulation, Viral , Humans , Immunoblotting , Molecular Sequence Data , Phosphorylation , Proteomics/methods , Signal Transduction/physiology , Tandem Mass Spectrometry
11.
Expert Rev Proteomics ; 13(3): 297-308, 2016.
Article in English | MEDLINE | ID: mdl-26697917

ABSTRACT

The concept of proteogenomics has emerged rapidly as a valuable approach to integrate mass spectrometry-derived proteomic data with genomic and transcriptomic data. It is used to harness the full potential of the former dataset in the discovery of potential biomarkers, therapeutic targets and novel proteins associated with various biological processes including diseases. Proteogenomic strategies have been successfully utilized to identify novel genes and redefine annotation of existing gene models in various genomes. In recent years, this approach has been extended to the field of cancer biology to unravel complexities in the tumor genomes and proteomes. Standard proteomics workflows employing translated cancer genomes and transcriptomes can potentially identify peptides from mutant proteins, splice variants and fusion proteins in the tumor proteome, which in addition to the currently available biomarker panels can serve as potential diagnostic and prognostic biomarkers, besides having therapeutic utility. This review focuses on the role of proteogenomics to understand cancer biology.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasms/metabolism , Proteogenomics/methods , Animals , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/genetics , Proteogenomics/trends
12.
Clin Proteomics ; 13: 13, 2016.
Article in English | MEDLINE | ID: mdl-27307780

ABSTRACT

BACKGROUND: Curcumin, derived from the rhizome Curcuma longa, is a natural anti-cancer agent and has been shown to inhibit proliferation and survival of tumor cells. Although the anti-cancer effects of curcumin are well established, detailed understanding of the signaling pathways altered by curcumin is still lacking. In this study, we carried out SILAC-based quantitative proteomic analysis of a HNSCC cell line (CAL 27) to investigate tyrosine signaling in response to curcumin. RESULTS: Using high resolution Orbitrap Fusion Tribrid Fourier transform mass spectrometer, we identified 627 phosphotyrosine sites mapping to 359 proteins. We observed alterations in the level of phosphorylation of 304 sites corresponding to 197 proteins upon curcumin treatment. We report here for the first time, curcumin-induced alterations in the phosphorylation of several kinases including TNK2, FRK, AXL, MAPK12 and phosphatases such as PTPN6, PTPRK, and INPPL1 among others. Pathway analysis revealed that the proteins differentially phosphorylated in response to curcumin are known to be involved in focal adhesion kinase signaling and actin cytoskeleton reorganization. CONCLUSIONS: The study indicates that curcumin may regulate cellular processes such as proliferation and migration through perturbation of the focal adhesion kinase pathway. This is the first quantitative phosphoproteomics-based study demonstrating the signaling events that are altered in response to curcumin. Considering the importance of curcumin as an anti-cancer agent, this study will significantly improve the current knowledge of curcumin-mediated signaling in cancer.

13.
Mol Cell Proteomics ; 13(11): 3184-98, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25060758

ABSTRACT

Accurate annotation of protein-coding genes is one of the primary tasks upon the completion of whole genome sequencing of any organism. In this study, we used an integrated transcriptomic and proteomic strategy to validate and improve the existing zebrafish genome annotation. We undertook high-resolution mass-spectrometry-based proteomic profiling of 10 adult organs, whole adult fish body, and two developmental stages of zebrafish (SAT line), in addition to transcriptomic profiling of six organs. More than 7,000 proteins were identified from proteomic analyses, and ∼ 69,000 high-confidence transcripts were assembled from the RNA sequencing data. Approximately 15% of the transcripts mapped to intergenic regions, the majority of which are likely long non-coding RNAs. These high-quality transcriptomic and proteomic data were used to manually reannotate the zebrafish genome. We report the identification of 157 novel protein-coding genes. In addition, our data led to modification of existing gene structures including novel exons, changes in exon coordinates, changes in frame of translation, translation in annotated UTRs, and joining of genes. Finally, we discovered four instances of genome assembly errors that were supported by both proteomic and transcriptomic data. Our study shows how an integrative analysis of the transcriptome and the proteome can extend our understanding of even well-annotated genomes.


Subject(s)
Genome/genetics , Proteome/analysis , Proteome/genetics , Transcriptome/genetics , Zebrafish/genetics , Amino Acid Sequence , Animals , Base Sequence , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Mass Spectrometry , Molecular Sequence Annotation , Proteomics , Sequence Analysis, RNA
14.
Proteomics ; 15(2-3): 383-93, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25327479

ABSTRACT

Dysregulation of protein expression is associated with most diseases including cancer. MS-based proteomic analysis is widely employed as a tool to study protein dysregulation in cancers. Proteins that are differentially expressed in head and neck squamous cell carcinoma (HNSCC) cell lines compared to the normal oral cell line could serve as biomarkers for patient stratification. To understand the proteomic complexity in HNSCC, we carried out iTRAQ-based MS analysis on a panel of HNSCC cell lines in addition to a normal oral keratinocyte cell line. LC-MS/MS analysis of total proteome of the HNSCC cell lines led to the identification of 3263 proteins, of which 185 proteins were overexpressed and 190 proteins were downregulated more than twofold in at least two of the three HNSCC cell lines studied. Among the overexpressed proteins, 23 proteins were related to DNA replication and repair. These included high-mobility group box 2 (HMGB2) protein, which was overexpressed in all three HNSCC lines studied. Overexpression of HMGB2 has been reported in various cancers, yet its role in HNSCC remains unclear. Immunohistochemical labeling of HMGB2 in a panel of HNSCC tumors using tissue microarrays revealed overexpression in 77% (54 of 70) of tumors. The HMGB proteins are known to bind to DNA structure resulting from cisplatin-DNA adducts and affect the chemosensitivity of cells. We observed that siRNA-mediated silencing of HMGB2 increased the sensitivity of the HNSCC cell lines to cisplatin and 5-FU. We hypothesize that targeting HMGB2 could enhance the efficacy of existing chemotherapeutic regimens for treatment of HNSCC. All MS data have been deposited in the ProteomeXchange with identifier PXD000737 (http://proteomecentral.proteomexchange.org/dataset/PXD000737).


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , HMGB2 Protein/genetics , Head and Neck Neoplasms/drug therapy , RNA Interference , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line , Cell Line, Tumor , HMGB2 Protein/analysis , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Humans , Proteomics , RNA, Small Interfering/genetics , Squamous Cell Carcinoma of Head and Neck , Tandem Mass Spectrometry
15.
Proteomics ; 15(2-3): 374-82, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25366905

ABSTRACT

Esophageal squamous-cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early-stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non-neoplastic Het-1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry-based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA-based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Ephrin-A2/metabolism , Esophageal Neoplasms/metabolism , Phosphotyrosine/analysis , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line , Cell Line, Tumor , Ephrin-A2/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Esophagus/metabolism , Esophagus/pathology , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Mass Spectrometry , Phosphorylation , Phosphotyrosine/genetics , Phosphotyrosine/metabolism
16.
Proteomics ; 15(2-3): 532-44, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25367039

ABSTRACT

Interleukin-33 (IL-33) is a novel member of the IL-1 family of cytokines that plays diverse roles in the regulation of immune responses. IL-33 exerts its effects through a heterodimeric receptor complex resulting in the production and release of proinflammatory cytokines. A detailed understanding of the signaling pathways activated by IL-33 is still unclear. To gain insights into the IL-33-mediated signaling mechanisms, we carried out a SILAC-based global quantitative phosphoproteomic analysis that resulted in the identification of 7191 phosphorylation sites derived from 2746 proteins. We observed alterations in the level of phosphorylation in 1050 sites corresponding to 672 proteins upon IL-33 stimulation. We report, for the first time, phosphorylation of multiple protein kinases, including mitogen-activated protein kinase activated protein kinase 2 (Mapkapk2), receptor (TNFRSF) interacting serine-threonine kinase 1 (Ripk1), and NAD kinase (Nadk) that are induced by IL-33. In addition, we observed IL-33-induced phosphorylation of several protein phosphatases including protein tyrosine phosphatase, nonreceptor-type 12 (Ptpn12), and inositol polyphosphate-5-phosphatase D (Inpp5d), which have not been reported previously. Network analysis revealed an enrichment of actin binding and cytoskeleton reorganization that could be important in macrophage activation induced by IL-33. Our study is the first quantitative analysis of IL-33-regulated phosphoproteome. Our findings significantly expand the understanding of IL-33-mediated signaling events and have the potential to provide novel therapeutic targets pertaining to immune-related diseases such as asthma where dysregulation of IL-33 is observed. All MS data have been deposited in the ProteomeXchange with identifier PXD000984 (http://proteomecentral.proteomexchange.org/dataset/PXD000984).


Subject(s)
Interleukin-6/immunology , Macrophages/immunology , Proteins/analysis , Proteins/immunology , Signal Transduction , Amino Acid Sequence , Animals , Cell Line , Macrophages/chemistry , Mass Spectrometry , Mice , Molecular Sequence Data , Phosphopeptides/analysis , Phosphopeptides/immunology , Phosphoprotein Phosphatases/analysis , Phosphoprotein Phosphatases/immunology , Phosphorylation , Protein Interaction Maps , Protein Kinases/analysis , Protein Kinases/immunology , Proteomics
17.
J Proteome Res ; 14(9): 3882-3891, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26267517

ABSTRACT

The human oncogene PIK3CA is frequently mutated in human cancers. Two hotspot mutations in PIK3CA, E545K and H1047R, have been shown to regulate widespread signaling events downstream of AKT, leading to increased cell proliferation, growth, survival, and motility. We used quantitative mass spectrometry to profile the global phosphotyrosine proteome of isogenic knock-in cell lines containing these activating mutations, where we identified 824 unique phosphopeptides. Although it is well understood that these mutations result in hyperactivation of the serine/threonine kinase AKT, we found a surprisingly widespread modulation of tyrosine phosphorylation levels of proteins in the mutant cells. In the tyrosine kinome alone, 29 tyrosine kinases were altered in their phosphorylation status. Many of the regulated phosphosites that we identified were located in the kinase domain or the canonical activation sites, indicating that these kinases and their downstream signaling pathways were activated. Our study demonstrates that there is frequent and unexpected cross-talk that occurs between tyrosine signaling pathways and serine/threonine signaling pathways activated by the canonical PI3K-AKT axis.


Subject(s)
Phosphatidylinositol 3-Kinases/genetics , Phosphoproteins/genetics , Proteome/genetics , Signal Transduction/genetics , Tyrosine/metabolism , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/analysis , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Proteome/analysis , Proteome/chemistry , Proteome/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
18.
PLoS Pathog ; 9(6): e1003403, 2013.
Article in English | MEDLINE | ID: mdl-23785281

ABSTRACT

While phosphotyrosine modification is an established regulatory mechanism in eukaryotes, it is less well characterized in bacteria due to low prevalence. To gain insight into the extent and biological importance of tyrosine phosphorylation in Escherichia coli, we used immunoaffinity-based phosphotyrosine peptide enrichment combined with high resolution mass spectrometry analysis to comprehensively identify tyrosine phosphorylated proteins and accurately map phosphotyrosine sites. We identified a total of 512 unique phosphotyrosine sites on 342 proteins in E. coli K12 and the human pathogen enterohemorrhagic E. coli (EHEC) O157:H7, representing the largest phosphotyrosine proteome reported to date in bacteria. This large number of tyrosine phosphorylation sites allowed us to define five phosphotyrosine site motifs. Tyrosine phosphorylated proteins belong to various functional classes such as metabolism, gene expression and virulence. We demonstrate for the first time that proteins of a type III secretion system (T3SS), required for the attaching and effacing (A/E) lesion phenotype characteristic for intestinal colonization by certain EHEC strains, are tyrosine phosphorylated by bacterial kinases. Yet, A/E lesion and metabolic phenotypes were unaffected by the mutation of the two currently known tyrosine kinases, Etk and Wzc. Substantial residual tyrosine phosphorylation present in an etk wzc double mutant strongly indicated the presence of hitherto unknown tyrosine kinases in E. coli. We assess the functional importance of tyrosine phosphorylation and demonstrate that the phosphorylated tyrosine residue of the regulator SspA positively affects expression and secretion of T3SS proteins and formation of A/E lesions. Altogether, our study reveals that tyrosine phosphorylation in bacteria is more prevalent than previously recognized, and suggests the involvement of phosphotyrosine-mediated signaling in a broad range of cellular functions and virulence.


Subject(s)
Enteropathogenic Escherichia coli/metabolism , Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Phosphotyrosine/metabolism , Protein-Tyrosine Kinases/metabolism , Proteome/metabolism , Enteropathogenic Escherichia coli/genetics , Escherichia coli K12/genetics , Escherichia coli Proteins/genetics , Membrane Proteins/genetics , Phosphotyrosine/genetics , Protein-Tyrosine Kinases/genetics , Proteome/genetics , Signal Transduction/physiology
19.
BMC Cancer ; 15: 843, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26530123

ABSTRACT

BACKGROUND: Poor prognosis in gallbladder cancer is due to late presentation of the disease, lack of reliable biomarkers for early diagnosis and limited targeted therapies. Early diagnostic markers and novel therapeutic targets can significantly improve clinical management of gallbladder cancer. METHODS: Proteomic analysis of four gallbladder cancer cell lines based on the invasive property (non-invasive to highly invasive) was carried out using the isobaric tags for relative and absolute quantitation labeling-based quantitative proteomic approach. The expression of macrophage migration inhibitory factor was analysed in gallbladder adenocarcinoma tissues using immunohistochemistry. In vitro cellular assays were carried out in a panel of gallbladder cancer cell lines using MIF inhibitors, ISO-1 and 4-IPP or its specific siRNA. RESULTS: The quantitative proteomic experiment led to the identification of 3,653 proteins, among which 654 were found to be overexpressed and 387 were downregulated in the invasive cell lines (OCUG-1, NOZ and GB-d1) compared to the non-invasive cell line, TGBC24TKB. Among these, macrophage migration inhibitory factor (MIF) was observed to be highly overexpressed in two of the invasive cell lines. MIF is a pleiotropic proinflammatory cytokine that plays a causative role in multiple diseases, including cancer. MIF has been reported to play a central role in tumor cell proliferation and invasion in several cancers. Immunohistochemical labeling of tumor tissue microarrays for MIF expression revealed that it was overexpressed in 21 of 29 gallbladder adenocarcinoma cases. Silencing/inhibition of MIF using siRNA and/or MIF antagonists resulted in a significant decrease in cell viability, colony forming ability and invasive property of the gallbladder cancer cells. CONCLUSIONS: Our findings support the role of MIF in tumor aggressiveness and suggest its potential application as a therapeutic target for gallbladder cancer.


Subject(s)
Biomarkers, Tumor/biosynthesis , Gallbladder Neoplasms/genetics , Intramolecular Oxidoreductases/biosynthesis , Macrophage Migration-Inhibitory Factors/biosynthesis , Prognosis , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Early Detection of Cancer , Gallbladder Neoplasms/diagnosis , Gallbladder Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Intramolecular Oxidoreductases/genetics , Macrophage Migration-Inhibitory Factors/genetics , Macrophages/metabolism , Macrophages/pathology , Neoplasm Proteins/biosynthesis , Proteomics
20.
J Proteome Res ; 13(6): 2749-60, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24669763

ABSTRACT

As part of the chromosome-centric human proteome project (C-HPP) initiative, we report our progress on the annotation of chromosome 22. Chromosome 22, spanning 51 million base pairs, was the first chromosome to be sequenced. Gene dosage alterations on this chromosome have been shown to be associated with a number of congenital anomalies. In addition, several rare but aggressive tumors have been associated with this chromosome. A number of important gene families including immunoglobulin lambda locus, Crystallin beta family, and APOBEC gene family are located on this chromosome. On the basis of proteomic profiling of 30 histologically normal tissues and cells using high-resolution mass spectrometry, we show protein evidence of 367 genes on chromosome 22. Importantly, this includes 47 proteins, which are currently annotated as "missing" proteins. We also confirmed the translation start sites of 120 chromosome 22-encoded proteins. Employing a comprehensive proteogenomics analysis pipeline, we provide evidence of novel coding regions on this chromosome which include upstream ORFs and novel exons in addition to correcting existing gene structures. We describe tissue-wise expression of the proteins and the distribution of gene families on this chromosome. These data have been deposited to ProteomeXchange with the identifier PXD000561.


Subject(s)
Chromosomes, Human, Pair 22/genetics , Proteome/genetics , Amino Acid Sequence , Genes, Neoplasm , Humans , Molecular Sequence Annotation , Molecular Sequence Data , Open Reading Frames , Peptide Mapping , Proteome/chemistry , Proteome/metabolism , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL