Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39126080

ABSTRACT

Developing an effective method for isolating bacterial genetic material from plants is a relatively challenging task and often does not yield adequately prepared material for further analyses. Previous studies often overlook connections, primarily focusing on laboratory investigations. With advancements in high-throughput sequencing techniques, we can now revisit and delve deeper into these interactions. Our study focuses on the initial phase of these investigations: genetic material isolation. Extracting bacterial DNA from aboveground plant parts, known as the phyllosphere, poses a significant challenge due to plant-derived contaminants. Existing isolation protocols frequently yield inconsistent results, necessitating continuous refinement and optimization. In our study, we developed an effective isolation protocol employing mechanical-chemical lysis, sonication, and membrane filtration. This approach yielded high-quality DNA at a concentration of 38.08 ng/µL, suitable for advanced sequencing applications. Our results underscore the effectiveness and necessity of these methods for conducting comprehensive microbiological analyses. Furthermore, our research not only lays the groundwork for further studies on lettuce microbiota, but also highlights the potential for utilizing our developed protocol in investigating other plants and their microbiomes.


Subject(s)
DNA, Bacterial , Lactuca , Lactuca/microbiology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Sonication , Bacteria/genetics , Bacteria/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Microbiota/genetics
2.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792197

ABSTRACT

The impact of fluorine on plants remains poorly understood. We examined duckweed growth in extracts of soil contaminated with fluorine leached from chicken manure. Additionally, fluorine levels were analyzed in fresh manure, outdoor-stored manure, and soil samples at varying distances from the manure pile. Fresh manure contained 37-48 mg F- × kg-1, while soil extracts contained 2.1 to 4.9 mg F- × kg-1. We evaluated the physiological effects of fluorine on duckweed cultured on soil extracts or in 50% Murashige-Skoog (MS) medium supplemented with fluorine concentrations matching those in soil samples (2.1 to 4.9 mg F- × L-1), as well as at 0, 4, and 210 mg × L-1. Duckweed exposed to fluorine displayed similar toxicity symptoms whether in soil extracts or supplemented medium. Fluoride at concentrations of 2.1 to 4.9 mg F- × L-1 reduced the intact chlorophyll content, binding the porphyrin ring at position 32 without affecting Mg2+. This reaction resulted in chlorophyll a absorption peak shifted towards shorter wavelengths and formation of a new band of the F--chlorophyll a complex at λ = 421 nm. Moreover, plants exposed to low concentrations of fluorine exhibited increased activities of aminolevulinic acid dehydratase and chlorophyllase, whereas the activities of both enzymes sharply declined when the fluoride concentration exceeded 4.9 mg × L-1. Consequently, fluorine damages chlorophyll a, disrupts the activity of chlorophyll-metabolizing enzymes, and diminishes the plant growth rate, even when the effects of these disruptions are too subtle to be discerned by the naked human eye.


Subject(s)
Araceae , Chlorophyll , Fluorides , Araceae/metabolism , Araceae/drug effects , Araceae/growth & development , Chlorophyll/metabolism , Fluorides/analysis , Soil Pollutants/analysis , Soil Pollutants/toxicity , Soil/chemistry , Manure/analysis , Environmental Pollution/analysis
3.
Sci Total Environ ; 926: 171540, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38492601

ABSTRACT

In the rapidly changing climate, the biogeochemical behaviours of trace elements and Rare Earth Elements (REEs) in emerging periglacial environments assumes profound importance. This study provides pivotal insights into this dynamic by investigating the Antarctic's response to global climate change. The bedrock of King George Island is rich in REEs, with the presence of trace metals (TEs), with the highest concentrations of metals found in ornithogenic soil (∑REE 84.01-85.53 mg∙kg-1 dry weight). REEs in the studied soil, found mainly in igneous rocks, as is indicated by the positive correlation of these elements with sodium and calcium. The TEs released as a result of weathering are leached by water flowing down local watercourses to Admiralty Bay, as indicated by the decreasing results of ∑REE = 11.59 µg∙dm-3 in watercourse water, ∑REE = 1.62 µg∙dm-3 in watercourse pools and ∑REE = 0.66 µg∙dm-3 in the water of Admiralty Bay at the outlet of the watercourse. Water originating from the melting of snow on the glacier also carried REEs (∑REE = 0.14 µg∙dm-3), a fact which suggest the further influx of these elements from atmospheric deposition. The Prasiola crispa turned out to be the most susceptible to the accumulation of REEs (∑ 80.73 ± 5.05 µg g-1) and TEs, with the exception of chromium and zinc, whose concentrations were found to be at their highest in Deschampsia antarctica. In Usnea antarctica, Xanthoria candelaria, and Ceratodon purpureus and Politrichastrum alpinum, a dominant role in the accumulation of REEs was played by HREEs. The determined enrichment factor (EF) indicates that the soil cover is a source of REEs (EFAlgae for ∑REE = 5.07; EFLichen for ∑REE = 6.65; EFBryophyta for ∑REE = 5.04; EFVascular for ∑REE = 4.38), while Ni, As and Pb accumulated in plants may originate from other sources than the soil.

SELECTION OF CITATIONS
SEARCH DETAIL