Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
J Surg Oncol ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155651

ABSTRACT

BACKGROUND AND OBJECTIVES: Our aim in this study was to investigate the usefulness of circulating tumor (ct) DNA methylation analysis for predicting long-term outcomes after resection in Stage IV colorectal cancer (CRC). METHODS: Methylation analyses were performed on 95 plasma samples from patients with CRC who underwent surgery. The methylation status (relative methylation value: RMV) of CpG within the promoter region of three genes (CHFR, SOX11, and CDO1) was assessed to quantitative methylation-specific PCR (qMSP) analysis. RESULTS: In the patients who had undergone resection of the primary tumor and metastatic organs with curative intent, the CHFR-RMV high group had significantly worse recurrence-free survival (RFS) compared with the CHFR-RMV low group (p = 0.001). Multivariate analysis revealed that CHFR-RMV was a significant independent prognostic factor (hazard ratio = 2.63 (1.29-5.36); p = 0.008). In the patients who had undergone resection of the primary tumor with metastatic organs with curative intent after neoadjuvant systemic chemotherapy, the SOX11-RMV high group had significantly worse RFS compared with the SOX11-RMV low group (p = 0.004). CONCLUSIONS: The current study showed the usefulness of ctDNA methylation analysis for predicting the possibility of curative resection and long-term outcomes after resection in Stage IV CRC. A future prospective study is needed to obtain more conclusive results.

2.
Front Oncol ; 14: 1404628, 2024.
Article in English | MEDLINE | ID: mdl-38800385

ABSTRACT

Background: Cancer stem cells (CSCs) have emerged as pivotal players in tumorigenesis, disease progression, and resistance to therapies. Objective: This comprehensive review delves into the intricate relationship between CSCs and the cell-of-origin in diverse cancer types. Design: Comprehensive review of thematically-relevant literature. Methods: We explore the underlying molecular mechanisms that drive the conversion of normal cells into CSCs and the impact of the cell-of-origin on CSC properties, tumor initiation, and therapeutic responses. Moreover, we discuss potential therapeutic interventions targeting CSCs based on their distinct cell-of-origin characteristics. Results: Accruing evidence suggest that the cell-of-origin, the cell type from which the tumor originates, plays a crucial role in determining the properties of CSCs and their contribution to tumor heterogeneity. Conclusion: By providing critical insights into the complex interplay between CSCs and their cellular origins, this article aims to enhance our understanding of cancer biology and pave the way for more effective and personalized cancer treatments.

3.
Clin Transl Med ; 14(8): e1778, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39083293

ABSTRACT

Recent advances in molecular analyses of ovarian cancer have revealed a wealth of promising tumour-specific biomarkers, including protein, DNA mutations and methylation; however, reliably detecting such alterations at satisfactorily high sensitivity and specificity through low-cost methods remains challenging, especially in early-stage diseases. Here we present PapDREAM, a new approach that enables detection of rare, ovarian-cancer-specific aberrations of DNA methylation from routinely-collected cervical Pap specimens. The PapDREAM approach employs a microfluidic platform that performs highly parallelized digital high-resolution melt to analyze locus-specific DNA methylation patterns on a molecule-by-molecule basis at or near single CpG-site resolution at a fraction (< 1/10th) of the cost of next-generation sequencing techniques. We demonstrate the feasibility of the platform by assessing intermolecular heterogeneity of DNA methylation in a panel of methylation biomarker loci using DNA derived from Pap specimens obtained from a cohort of 43 women, including 18 cases with ovarian cancer and 25 cancer-free controls. PapDREAM leverages systematic multidimensional bioinformatic analyses of locus-specific methylation heterogeneity to improve upon Pap-specimen-based detection of ovarian cancer, demonstrating a clinical sensitivity of 50% at 99% specificity in detecting ovarian cancer cases with an area under the receiver operator curve of 0.90. We then establish a logistic regression model that could be used to identify high-risk patients for subsequent clinical follow-up and monitoring. The results of this study support the utility of PapDREAM as a simple, low-cost screening method with the potential to integrate with existing clinical workflows for early detection of ovarian cancer. KEY POINTS: We present a microfluidic platform for detection and analysis of rare, heterogeneously methylated DNA within Pap specimens towards detection of ovarian cancer. The platform achieves high sensitivity (fractions <0.00005%) at a suitably low cost (∼$25) for routine screening applications. Furthermore, it provides molecule-by-molecule quantitative analysis to facilitate further study on the effect of heterogeneous methylation on cancer development.


Subject(s)
DNA Methylation , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/diagnosis , DNA Methylation/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Middle Aged , DNA/genetics , DNA/analysis , Sensitivity and Specificity , Adult , Papanicolaou Test/methods , Papanicolaou Test/statistics & numerical data
4.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979280

ABSTRACT

Aging is associated with a decline in the number and fitness of adult stem cells 1-4 . Aging-associated loss of stemness is posited to suppress tumorigenesis 5,6 , but this hypothesis has not been tested in vivo . Here, using physiologically aged autochthonous genetically engineered mouse models and primary cells 7,8 , we demonstrate aging suppresses lung cancer initiation and progression by degrading stemness of the alveolar cell of origin. This phenotype is underpinned by aging-associated induction of the transcription factor NUPR1 and its downstream target lipocalin-2 in the cell of origin in mice and humans, leading to a functional iron insufficiency in the aged cells. Genetic inactivation of the NUPR1-lipocalin-2 axis or iron supplementation rescue stemness and promote tumorigenic potential of aged alveolar cells. Conversely, targeting the NUPR1- lipocalin-2 axis is detrimental to young alveolar cells via induction of ferroptosis. We find that aging-associated DNA hypomethylation at specific enhancer sites associates with elevated NUPR1 expression, which is recapitulated in young alveolar cells by inhibition of DNA methylation. We uncover that aging drives a functional iron insufficiency, which leads to loss of stemness and tumorigenesis, but promotes resistance to ferroptosis. These findings have significant implications for the therapeutic modulation of cellular iron homeostasis in regenerative medicine and in cancer prevention. Furthermore, our findings are consistent with a model whereby most human cancers initiate in young individuals, revealing a critical window for such cancer prevention efforts.

SELECTION OF CITATIONS
SEARCH DETAIL