Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Mol Psychiatry ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383768

ABSTRACT

White matter (WM) fiber tract differences are present in autism spectrum disorder (ASD) and could be important markers of behavior. One of the earliest phenotypic differences in ASD are language atypicalities. Although language has been linked to WM in typical development, no work has evaluated this association in early ASD. Participants came from the Infant Brain Imaging Study and included 321 infant siblings of children with ASD at high likelihood (HL) for developing ASD; 70 HL infants were later diagnosed with ASD (HL-ASD), and 251 HL infants were not diagnosed with ASD (HL-Neg). A control sample of 140 low likelihood infants not diagnosed with ASD (LL-Neg) were also included. Infants contributed expressive language, receptive language, and diffusion tensor imaging data at 6-, 12-, and 24 months. Mixed effects regression models were conducted to evaluate associations between WM and language trajectories. Trajectories of microstructural changes in the right arcuate fasciculus were associated with expressive language development. HL-ASD infants demonstrated a different developmental pattern compared to the HL-Neg and LL-Neg groups, wherein the HL-ASD group exhibited a positive association between WM fractional anisotropy and language whereas HL-Neg and LL-Neg groups showed weak or no association. No other fiber tracts demonstrated significant associations with language. In conclusion, results indicated arcuate fasciculus WM is linked to language in early toddlerhood for autistic toddlers, with the strongest associations emerging around 24 months. To our knowledge, this is the first study to evaluate associations between language and WM development during the pre-symptomatic period in ASD.

2.
Cereb Cortex ; 34(13): 30-39, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696599

ABSTRACT

The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Visual Cortex , Humans , Amygdala/diagnostic imaging , Amygdala/physiopathology , Male , Female , Infant , Visual Cortex/diagnostic imaging , Visual Cortex/physiopathology , Visual Cortex/growth & development , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Autistic Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Genetic Predisposition to Disease/genetics
3.
Environ Res ; 259: 119467, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38942256

ABSTRACT

INTRODUCTION: Existing evidence suggests that exposure to phthalates is higher among younger age groups. However, limited knowledge exists on how phthalate exposure, as well as exposure to replacement plasticizers, di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) and di-2-ethylhexyl terephthalate (DEHTP), change from infancy through early childhood. METHODS: Urine samples were collected across the first 5 years of life from typically developing infants and young children enrolled between 2017 and 2020 in the longitudinal UNC Baby Connectome Project. From 438 urine samples among 187 participants, we quantified concentrations of monobutyl phthalate (MnBP), mono-3-carboxypropyl phthalate (MCPP), monoisobutyl phthalate (MiBP), monoethyl phthalate (MEP), monobenzyl phthalate (MBzP), and metabolites of di(2-ethylhexyl) phthalate (DEHP), diisonoyl phthalate (DiNP), DINCH and DEHTP. Specific gravity (SG) adjusted metabolite and molar sum concentrations were compared across age groups. Intraclass correlation coefficients (ICCs) were calculated among 122 participants with multiple urine specimens (373 samples). RESULTS: Most phthalate metabolites showed high detection frequencies (>80% of samples). Replacement plasticizers DINCH (58-60%) and DEHTP (>97%) were also commonly found. DiNP metabolites were less frequently detected (<10%). For some metabolites, SG-adjusted concentrations were inversely associated with age, with the highest concentrations found in the first year of life. ICCs revealed low to moderate reliability in metabolite measurements (ρ = 0.10-0.48) suggesting a high degree of within-individual variation in exposure among this age group. The first 6 months (compared to remaining age groups) showed an increased ratio of carboxylated metabolites of DEHP and DEHTP, compared to other common metabolites, but no clear age trends for DINCH metabolite ratios were observed. CONCLUSION: Metabolites of phthalates and replacements plasticizers were widely detected in infancy and early childhood, with the highest concentrations observed in the first year of life for several metabolites. Higher proportions of carboxylated metabolites of DEHP and DEHTP in younger age groups indicate potential differences in metabolism during infancy.

4.
Autism Res ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031157

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneous condition that affects development and functioning from infancy through adulthood. Efforts to parse the heterogeneity of the autism spectrum through subgroups such as Asperger's and Profound Autism have been controversial, and have consistently struggled with issues of reliability, validity, and interpretability. Nonetheless, methods for successfully identifying clinically meaningful subgroups within autism are needed to ensure that research, interventions, and services address the range of needs experienced by autistic individuals. The purpose of this study was to generate and test whether a simple set of questions, organized in a flowchart, could be used in clinical practice and research to differentiate meaningful subgroups based on individuals' level of functioning. Once generated, subgroups could also be compared to the recently proposed administrative category of Profound Autism and to groupings based on standardized adaptive measures. Ninety-seven adults with autism or related neurodevelopmental disorders participating in a longstanding longitudinal study, or their caregivers if they could not answer for themselves, completed phone interviews when the participants were ~30 years old. Information from these phone interviews was used to generate vignettes summarizing characteristics and aspects of the daily lives of each participant (e.g., language level, vocational activities, and social relationships). Three expert clinicians then used these vignettes to classify each participant based on their level of support needs. Meaningfully distinct subgroups within the sample were identified which could be reliably distinguished from one another. Implications of such categorizations and future directions are discussed.

5.
Autism Res ; 17(4): 838-851, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38204321

ABSTRACT

Gestures are an important social communication skill that infants and toddlers use to convey their thoughts, ideas, and intentions. Research suggests that early gesture use has important downstream impacts on developmental processes, such as language learning. However, autistic children are more likely to have challenges in their gestural development. The current study expands upon previous literature on the differences in gesture use between young autistic and non-autistic toddlers by collecting data using a parent-report questionnaire called the MCDI-Words and Gestures at three time points, 12, 18, and 24 months of age. Results (N = 467) showed that high-likelihood infants who later met diagnostic criteria for ASD (n = 73 HL-ASD) have attenuated gesture growth from 12 to 24 months for both deictic gestures and symbolic gestures when compared to high-likelihood infants who later did not meet criteria for ASD (n = 249 HL-Neg) and low-likelihood infants who did not meet criteria for ASD (n = 145 LL-Neg). Other social communicative skills, like play behaviors and imitation, were also found to be impacted in young autistic children when compared to their non-autistic peers. Understanding early differences in social communication growth before a formal autism diagnosis can provide important insights for early intervention.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Infant , Humans , Autistic Disorder/diagnosis , Gestures , Autism Spectrum Disorder/diagnosis , Language Development
6.
J Neurodev Disord ; 16(1): 47, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154179

ABSTRACT

BACKGROUND: Emerging biomarker technologies (e.g., MRI, EEG, digital phenotyping, eye-tracking) have potential to move the identification of autism into the first year of life. We investigated the perspectives of parents about the anticipated utility and impact of predicting later autism diagnosis from a biomarker-based test in infancy. METHODS: Parents of infants were interviewed to ascertain receptiveness and perspectives on early (6-12 months) prediction of autism using emerging biomarker technologies. One group had experience parenting an older autistic child (n=30), and the other had no prior autism parenting experience (n=25). Parent responses were analyzed using inductive qualitative coding methods. RESULTS: Almost all parents in both groups were interested in predictive testing for autism, with some stating they would seek testing only if concerned about their infant's development. The primary anticipated advantage of testing was to enable access to earlier intervention. Parents also described the anticipated emotions they would feel in response to test results, actions they might take upon learning their infant was likely to develop autism, attitudes towards predicting a child's future support needs, and the potential impacts of inaccurate prediction. CONCLUSION: In qualitative interviews, parents of infants with and without prior autism experience shared their anticipated motivations and concerns about predictive testing for autism in the first year of life. The primary reported motivators for testing-to have more time to prepare and intervene early-could be constrained by familial resources and service availability. Implications for ethical communication of results, equitable early intervention, and future research are discussed.


Subject(s)
Autistic Disorder , Parents , Humans , Infant , Male , Female , Autistic Disorder/diagnosis , Adult , Biomarkers , Qualitative Research , Autism Spectrum Disorder/diagnosis
7.
J Neurodev Disord ; 16(1): 17, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632549

ABSTRACT

Monogenic disorders account for a large proportion of population-attributable risk for neurodevelopmental disabilities. However, the data necessary to infer a causal relationship between a given genetic variant and a particular neurodevelopmental disorder is often lacking. Recognizing this scientific roadblock, 13 Intellectual and Developmental Disabilities Research Centers (IDDRCs) formed a consortium to create the Brain Gene Registry (BGR), a repository pairing clinical genetic data with phenotypic data from participants with variants in putative brain genes. Phenotypic profiles are assembled from the electronic health record (EHR) and a battery of remotely administered standardized assessments collectively referred to as the Rapid Neurobehavioral Assessment Protocol (RNAP), which include cognitive, neurologic, and neuropsychiatric assessments, as well as assessments for attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Co-enrollment of BGR participants in the Clinical Genome Resource's (ClinGen's) GenomeConnect enables display of variant information in ClinVar. The BGR currently contains data on 479 participants who are 55% male, 6% Asian, 6% Black or African American, 76% white, and 12% Hispanic/Latine. Over 200 genes are represented in the BGR, with 12 or more participants harboring variants in each of these genes: CACNA1A, DNMT3A, SLC6A1, SETD5, and MYT1L. More than 30% of variants are de novo and 43% are classified as variants of uncertain significance (VUSs). Mean standard scores on cognitive or developmental screens are below average for the BGR cohort. EHR data reveal developmental delay as the earliest and most common diagnosis in this sample, followed by speech and language disorders, ASD, and ADHD. BGR data has already been used to accelerate gene-disease validity curation of 36 genes evaluated by ClinGen's BGR Intellectual Disability (ID)-Autism (ASD) Gene Curation Expert Panel. In summary, the BGR is a resource for use by stakeholders interested in advancing translational research for brain genes and continues to recruit participants with clinically reported variants to establish a rich and well-characterized national resource to promote research on neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Neurodevelopmental Disorders , Humans , Male , Female , Autism Spectrum Disorder/genetics , Brain , Registries , Methyltransferases
8.
J Neurodev Disord ; 16(1): 12, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509470

ABSTRACT

BACKGROUND: Specifying early developmental differences among neurodevelopmental disorders with distinct etiologies is critical to improving early identification and tailored intervention during the first years of life. Recent studies have uncovered important differences between infants with fragile X syndrome (FXS) and infants with familial history of autism spectrum disorder who go on to develop autism themselves (FH-ASD), including differences in brain development and behavior. Thus far, there have been no studies longitudinally investigating differential developmental skill profiles in FXS and FH-ASD infants. METHODS: The current study contrasted longitudinal trajectories of verbal (expressive and receptive language) and nonverbal (gross and fine motor, visual reception) skills in FXS and FH-ASD infants, compared to FH infants who did not develop ASD (FH-nonASD) and typically developing controls. RESULTS: Infants with FXS showed delays on a nonverbal composite compared to FH-ASD (as well as FH-nonASD and control) infants as early as 6 months of age. By 12 months an ordinal pattern of scores was established between groups on all domains tested, such that controls > FH-nonASD > FH-ASD > FXS. This pattern persisted through 24 months. Cognitive level differentially influenced developmental trajectories for FXS and FH-ASD. CONCLUSIONS: Our results demonstrate detectable group differences by 6 months between FXS and FH-ASD as well as differential trajectories on each domain throughout infancy. This work further highlights an earlier onset of global cognitive delays in FXS and, conversely, a protracted period of more slowly emerging delays in FH-ASD. Divergent neural and cognitive development in infancy between FXS and FH-ASD contributes to our understanding of important distinctions in the development and behavioral phenotype of these two groups.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Infant , Humans , Fragile X Syndrome/complications , Fragile X Syndrome/psychology , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/psychology , Language , Cognition
9.
Dev Cogn Neurosci ; 69: 101425, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39163782

ABSTRACT

Brain differences linked to autism spectrum disorder (ASD) can manifest before observable symptoms. Studying these early neural precursors in larger and more diverse cohorts is crucial for advancing our understanding of developmental pathways and potentially facilitating earlier identification. EEG is an ideal tool for investigating early neural differences in ASD, given its scalability and high tolerability in infant populations. In this context, we integrated EEG into an existing multi-site MRI study of infants with a higher familial likelihood of developing ASD. This paper describes the comprehensive protocol established to collect longitudinal, high-density EEG data from infants across five sites as part of the Infant Brain Imaging Study (IBIS) Network and reports interim feasibility and data quality results. We evaluated feasibility by measuring the percentage of infants from whom we successfully collected each EEG paradigm. The quality of task-free data was assessed based on the duration of EEG recordings remaining after artifact removal. Preliminary analyses revealed low data loss, with average in-session loss rates at 4.16 % and quality control loss rates at 11.66 %. Overall, the task-free data retention rate, accounting for both in-session issues and quality control, was 84.16 %, with high consistency across sites. The insights gained from this preliminary analysis highlight key sources of data attrition and provide practical considerations to guide similar research endeavors.

10.
Dev Cogn Neurosci ; 65: 101333, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154378

ABSTRACT

Amygdala function is implicated in the pathogenesis of autism spectrum disorder (ASD) and anxiety. We investigated associations between early trajectories of amygdala growth and anxiety and ASD outcomes at school age in two longitudinal studies: high- and low-familial likelihood for ASD, Infant Brain Imaging Study (IBIS, n = 257) and typically developing (TD) community sample, Early Brain Development Study (EBDS, n = 158). Infants underwent MRI scanning at up to 3 timepoints from neonate to 24 months. Anxiety was assessed at 6-12 years. Linear multilevel modeling tested whether amygdala volume growth was associated with anxiety symptoms at school age. In the IBIS sample, children with higher anxiety showed accelerated amygdala growth from 6 to 24 months. ASD diagnosis and ASD familial likelihood were not significant predictors. In the EBDS sample, amygdala growth from birth to 24 months was associated with anxiety. More anxious children had smaller amygdala volume and slower rates of amygdala growth. We explore reasons for the contrasting results between high-familial likelihood for ASD and TD samples, grounding results in the broader literature of variable associations between early amygdala volume and later anxiety. Results have the potential to identify mechanisms linking early amygdala growth to later anxiety in certain groups.


Subject(s)
Autism Spectrum Disorder , Child , Infant , Infant, Newborn , Humans , Anxiety , Anxiety Disorders , Brain , Magnetic Resonance Imaging/methods , Amygdala
11.
Shape Med Imaging (2023) ; 14350: 248-258, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38425723

ABSTRACT

In this study, we introduce a novel approach for the analysis and interpretation of 3D shapes, particularly applied in the context of neuroscientific research. Our method captures 2D perspectives from various vantage points of a 3D object. These perspectives are subsequently analyzed using 2D Convolutional Neural Networks (CNNs), uniquely modified with custom pooling mechanisms. We sought to assess the efficacy of our approach through a binary classification task involving subjects at high risk for Autism Spectrum Disorder (ASD). The task entailed differentiating between high-risk positive and high-risk negative ASD cases. To do this, we employed brain attributes like cortical thickness, surface area, and extra-axial cerebral spinal measurements. We then mapped these measurements onto the surface of a sphere and subsequently analyzed them via our bespoke method. One distinguishing feature of our method is the pooling of data from diverse views using our icosahedron convolution operator. This operator facilitates the efficient sharing of information between neighboring views. A significant contribution of our method is the generation of gradient-based explainability maps, which can be visualized on the brain surface. The insights derived from these explainability images align with prior research findings, particularly those detailing the brain regions typically impacted by ASD. Our innovative approach thereby substantiates the known understanding of this disorder while potentially unveiling novel areas of study.

12.
JAMA Netw Open ; 6(12): e2348341, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38113043

ABSTRACT

Importance: Perivascular spaces (PVS) and cerebrospinal fluid (CSF) are essential components of the glymphatic system, regulating brain homeostasis and clearing neural waste throughout the lifespan. Enlarged PVS have been implicated in neurological disorders and sleep problems in adults, and excessive CSF volume has been reported in infants who develop autism. Enlarged PVS have not been sufficiently studied longitudinally in infancy or in relation to autism outcomes or CSF volume. Objective: To examine whether enlarged PVS are more prevalent in infants who develop autism compared with controls and whether they are associated with trajectories of extra-axial CSF volume (EA-CSF) and sleep problems in later childhood. Design, Setting, and Participants: This prospective, longitudinal cohort study used data from the Infant Brain Imaging Study. Magnetic resonance images were acquired at ages 6, 12, and 24 months (2007-2017), with sleep questionnaires performed between ages 7 and 12 years (starting in 2018). Data were collected at 4 sites in North Carolina, Missouri, Pennsylvania, and Washington. Data were analyzed from March 2021 through August 2022. Exposure: PVS (ie, fluid-filled channels that surround blood vessels in the brain) that are enlarged (ie, visible on magnetic resonance imaging). Main Outcomes and Measures: Outcomes of interest were enlarged PVS and EA-CSF volume from 6 to 24 months, autism diagnosis at 24 months, sleep problems between ages 7 and 12 years. Results: A total of 311 infants (197 [63.3%] male) were included: 47 infants at high familial likelihood for autism (ie, having an older sibling with autism) who were diagnosed with autism at age 24 months, 180 high likelihood infants not diagnosed with autism, and 84 low likelihood control infants not diagnosed with autism. Sleep measures at school-age were available for 109 participants. Of infants who developed autism, 21 (44.7%) had enlarged PVS at 24 months compared with 48 infants (26.7%) in the high likelihood but no autism diagnosis group (P = .02) and 22 infants in the control group (26.2%) (P = .03). Across all groups, enlarged PVS at 24 months was associated with greater EA-CSF volume from ages 6 to 24 months (ß = 4.64; 95% CI, 0.58-8.72; P = .002) and more frequent night wakings at school-age (F = 7.76; η2 = 0.08; P = .006). Conclusions and Relevance: These findings suggest that enlarged PVS emerged between ages 12 and 24 months in infants who developed autism. These results add to a growing body of evidence that, along with excessive CSF volume and sleep dysfunction, the glymphatic system could be dysregulated in infants who develop autism.


Subject(s)
Autistic Disorder , Infant , Humans , Male , Child , Child, Preschool , Female , Autistic Disorder/diagnostic imaging , Longitudinal Studies , Prospective Studies , Brain/diagnostic imaging , Brain/pathology , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL