Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Development ; 148(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34927678

ABSTRACT

Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.


Subject(s)
Embryonic Development/genetics , Lung/growth & development , Mesenchymal Stem Cells/cytology , Organogenesis/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Embryo, Mammalian/ultrastructure , Epithelial Cells/cytology , Epithelial Cells/ultrastructure , Gene Expression Regulation, Developmental/genetics , Lung/ultrastructure , Mesenchymal Stem Cells/ultrastructure , Mice , RNA-Seq , Single-Cell Analysis , Transcriptome/genetics
2.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L785-L790, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33655765

ABSTRACT

Noninvasive sampling of the distal airspace in patients with acute respiratory distress syndrome (ARDS) has long eluded clinical and translational researchers. We recently reported that fluid collected from heat moisture exchange (HME) filters closely mirrors fluid directly aspirated from the distal airspace. In the current study, we sought to determine fluid yield from different HME types, optimal HME circuit dwell time, and reliability of HME fluid in reflecting the distal airspace. We studied fluid yield from four different filter types by loading increasing volumes of saline and measuring volumes of fluid recovered. We collected filters after 1, 2, and 4 h of dwell time for measurement of fluid volume and total protein from 13 subjects. After identifying 4 h as the optimal dwell time, we measured total protein and IgM in HME fluid from 42 subjects with ARDS and nine with hydrostatic pulmonary edema (HYDRO). We found that the fluid yield varies greatly by filter type. With timed sample collection, fluid recovery increased with increasing circuit dwell time with a median volume of 2.0 mL [interquartile range (IQR) 1.2-2.7] after 4 h. Total protein was higher in the 42 subjects with ARDS compared with nine with HYDRO [median 708 µg/mL (IQR 244-2017) vs. 364 µg/mL (IQR 136-578), P = 0.047], confirming that total protein concentration in HME is higher in ARDS compared with hydrostatic edema. These studies establish a standardized HME fluid collection protocol and confirm that HME fluid analysis is a novel noninvasive tool for the study of the distal airspace in ARDS.


Subject(s)
Diagnostic Techniques, Respiratory System/standards , Hot Temperature , Humidity , Pulmonary Edema/diagnosis , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnosis , Adult , Aged , Aged, 80 and over , Breath Tests , Female , Humans , Male , Middle Aged , Pulmonary Edema/physiopathology , Respiratory Distress Syndrome/physiopathology
3.
Am J Respir Crit Care Med ; 201(10): 1249-1262, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32023086

ABSTRACT

Rationale: Bronchopulmonary dysplasia (BPD) is a leading complication of preterm birth that affects infants born in the saccular stage of lung development at <32 weeks of gestation. Although the mechanisms driving BPD remain uncertain, exposure to hyperoxia is thought to contribute to disease pathogenesis.Objectives: To determine the effects of hyperoxia on epithelial-mesenchymal interactions and to define the mediators of activated Wnt/ß-catenin signaling after hyperoxia injury.Methods: Three hyperoxia models were used: A three-dimensional organotypic coculture using primary human lung cells, precision-cut lung slices (PCLS), and a murine in vivo hyperoxia model. Comparisons of normoxia- and hyperoxia-exposed samples were made by real-time quantitative PCR, RNA in situ hybridization, quantitative confocal microscopy, and lung morphometry.Measurements and Main Results: Examination of an array of Wnt ligands in the three-dimensional organotypic coculture revealed increased mesenchymal expression of WNT5A. Inhibition of Wnt5A abrogated the BPD transcriptomic phenotype induced by hyperoxia. In the PCLS model, Wnt5A inhibition improved alveolarization following hyperoxia exposure, and treatment with recombinant Wnt5a reproduced features of the BPD phenotype in PCLS cultured in normoxic conditions. Chemical inhibition of NF-κB with BAY11-7082 reduced Wnt5a expression in the PCLS hyperoxia model and in vivo mouse hyperoxia model, with improved alveolarization in the PCLS model.Conclusions: Increased mesenchymal Wnt5A during saccular-stage hyperoxia injury contributes to the impaired alveolarization and septal thickening observed in BPD. Precise targeting of Wnt5A may represent a potential therapeutic strategy for the treatment of BPD.


Subject(s)
Alveolar Epithelial Cells/metabolism , Fibroblasts/metabolism , Hyperoxia/genetics , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Wnt-5a Protein/genetics , Animals , Bronchopulmonary Dysplasia , Coculture Techniques , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Hyperoxia/metabolism , In Situ Hybridization , Lung/growth & development , Mesenchymal Stem Cells/drug effects , Mice , Microscopy, Confocal , NF-kappa B/antagonists & inhibitors , Nitriles/pharmacology , Organ Culture Techniques , Real-Time Polymerase Chain Reaction , Sulfones/pharmacology , Wnt-5a Protein/drug effects , Wnt-5a Protein/metabolism
4.
Proc Natl Acad Sci U S A ; 113(19): E2627-35, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27114524

ABSTRACT

Interleukin (IL)-18 is an important effector of innate and adaptive immunity, but its expression must also be tightly regulated because it can potentiate lethal systemic inflammation and death. Healthy and septic human neonates demonstrate elevated serum concentrations of IL-18 compared with adults. Thus, we determined the contribution of IL-18 to lethality and its mechanism in a murine model of neonatal sepsis. We find that IL-18-null neonatal mice are highly protected from polymicrobial sepsis, whereas replenishing IL-18 increased lethality to sepsis or endotoxemia. Increased lethality depended on IL-1 receptor 1 (IL-1R1) signaling but not adaptive immunity. In genome-wide analyses of blood mRNA from septic human neonates, expression of the IL-17 receptor emerged as a critical regulatory node. Indeed, IL-18 administration in sepsis increased IL-17A production by murine intestinal γδT cells as well as Ly6G(+) myeloid cells, and blocking IL-17A reduced IL-18-potentiated mortality to both neonatal sepsis and endotoxemia. We conclude that IL-17A is a previously unrecognized effector of IL-18-mediated injury in neonatal sepsis and that disruption of the deleterious and tissue-destructive IL-18/IL-1/IL-17A axis represents a novel therapeutic approach to improve outcomes for human neonates with sepsis.


Subject(s)
Interleukin-17/antagonists & inhibitors , Interleukin-17/immunology , Interleukin-18/immunology , Neonatal Sepsis/immunology , Neonatal Sepsis/therapy , Survival Rate , Animals , Animals, Newborn , Antibodies, Monoclonal/therapeutic use , Female , Male , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy/methods , Neonatal Sepsis/pathology , Treatment Outcome
5.
Am J Respir Cell Mol Biol ; 59(2): 158-166, 2018 08.
Article in English | MEDLINE | ID: mdl-29625013

ABSTRACT

Alveolar type II (AT2) epithelial cells are uniquely specialized to produce surfactant in the lung and act as progenitor cells in the process of repair after lung injury. AT2 cell injury has been implicated in several lung diseases, including idiopathic pulmonary fibrosis and bronchopulmonary dysplasia. The inability to maintain primary AT2 cells in culture has been a significant barrier in the investigation of pulmonary biology. We have addressed this knowledge gap by developing a three-dimensional (3D) organotypic coculture using primary human fetal AT2 cells and pulmonary fibroblasts. Grown on top of matrix-embedded fibroblasts, the primary human AT2 cells establish a monolayer and have direct contact with the underlying pulmonary fibroblasts. Unlike conventional two-dimensional (2D) culture, the structural and functional phenotype of the AT2 cells in our 3D organotypic culture was preserved over 7 days of culture, as evidenced by the presence of lamellar bodies and by production of surfactant proteins B and C. Importantly, the AT2 cells in 3D cocultures maintained the ability to replicate, with approximately 60% of AT2 cells staining positive for the proliferation marker Ki67, whereas no such proliferation is evident in 2D cultures of the same primary AT2 cells. This organotypic culture system enables interrogation of AT2 epithelial biology by providing a reductionist in vitro model in which to investigate the response of AT2 epithelial cells and AT2 cell-fibroblast interactions during lung injury and repair.


Subject(s)
Cell Communication/physiology , Epithelial Cells/metabolism , Lung Injury/pathology , Lung/pathology , Cells, Cultured , Coculture Techniques , Fibroblasts/metabolism , Humans , Phenotype
6.
Biol Reprod ; 99(5): 922-937, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29733339

ABSTRACT

Preterm birth affects approximately 1 out of every 10 births in the United States, leading to high rates of mortality and long-term negative health consequences. To investigate the mechanisms leading to preterm birth so as to develop prevention strategies, researchers have developed numerous mouse models of preterm birth. However, the lack of standard definitions for preterm birth in mice limits our field's ability to compare models and make inferences about preterm birth in humans. In this review, we discuss numerous mouse preterm birth models, propose guidelines for experiments and reporting, and suggest markers that can be used to assess whether pups are premature or mature. We argue that adoption of these recommendations will enhance the utility of mice as models for preterm birth.


Subject(s)
Obstetric Labor, Premature/physiopathology , Animals , Disease Models, Animal , Female , Humans , Mice , Pregnancy
7.
Pediatr Res ; 84(3): 458-465, 2018 09.
Article in English | MEDLINE | ID: mdl-29976969

ABSTRACT

BACKGROUND: Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results. METHODS: We used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo. RESULTS: In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors. CONCLUSIONS: We speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth.


Subject(s)
Betamethasone/therapeutic use , Ductus Arteriosus, Patent/drug therapy , Ductus Arteriosus/drug effects , Animals , Echocardiography , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Infant, Premature , Maternal Exposure , Mice , Oxygen/metabolism , Papio , Polymerase Chain Reaction , Prostaglandins/metabolism
8.
Development ; 141(24): 4751-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25395457

ABSTRACT

Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for ß1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of ß1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete ß1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. ß1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for ß1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial ß1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.


Subject(s)
Epithelial Cells/metabolism , Integrin beta1/metabolism , Lung/embryology , Organogenesis/physiology , Pulmonary Alveoli/embryology , Animals , Bronchoalveolar Lavage , Cell Adhesion/physiology , Cell Movement/physiology , Chemokine CCL2/metabolism , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix/metabolism , Integrases/metabolism , Mice , Microscopy, Confocal , Pulmonary Surfactant-Associated Protein C/metabolism , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances
9.
Am J Pathol ; 186(7): 1786-1800, 2016 07.
Article in English | MEDLINE | ID: mdl-27181406

ABSTRACT

The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase ß transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase ß transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.


Subject(s)
Elastin/metabolism , Epithelium/metabolism , Inflammation/complications , Lung/embryology , Animals , Blotting, Western , Fetal Development , Humans , Immunohistochemistry , Infant, Newborn , Infant, Premature , Inflammation/metabolism , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Models, Animal , NF-kappa B/metabolism , Real-Time Polymerase Chain Reaction
11.
J Biol Chem ; 288(21): 15318-25, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23558680

ABSTRACT

Inflammation inhibits normal lung morphogenesis in preterm infants. Soluble inflammatory mediators present in the lungs of patients developing bronchopulmonary dysplasia disrupt expression of multiple genes critical for development. However, the mechanisms linking innate immune signaling and developmental programs are not clear. NF-κB activation inhibits expression of the critical morphogen FGF-10. Here, we show that interactions between the RELA subunit of NF-κB and SP3 suppress SP1-mediated FGF-10 expression. SP3 co-expression reduced SP1-mediated Fgf-10 promoter activity, suggesting antagonistic interactions between SP1 and SP3. Chromatin immunoprecipitation of LPS-treated primary mouse fetal lung mesenchymal cells detected increased interactions between SP3, RELA, and the Fgf-10 promoter. Expression of a constitutively active IκB kinase ß mutant not only decreased Fgf-10 promoter activity but also increased RELA-SP3 nuclear interactions. Expression of a dominant-negative IκB, which blocks NF-κB nuclear translocation, prevented inhibition of FGF-10 by SP3. The inhibitory functions of SP3 required sequences located in the N-terminal region of the protein. These data suggested that inhibition of FGF-10 by inflammatory signaling involves the NF-κB-dependent interactions between RELA, SP3, and the Fgf-10 promoter. NF-κB activation may therefore lead to reduced gene expression by recruiting inhibitory factors to specific gene promoters following exposure to inflammatory stimuli.


Subject(s)
Cell Nucleus/metabolism , Fibroblast Growth Factor 10/metabolism , Gene Expression Regulation , Response Elements , Sp3 Transcription Factor/metabolism , Transcription Factor RelA/metabolism , Active Transport, Cell Nucleus/drug effects , Active Transport, Cell Nucleus/genetics , Animals , CHO Cells , Cell Nucleus/genetics , Cell Nucleus/immunology , Cell Nucleus/pathology , Cricetinae , Fetus/immunology , Fetus/metabolism , Fetus/pathology , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 10/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Inflammation/chemically induced , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , Lung/immunology , Lung/metabolism , Lung/pathology , Mice , Sp3 Transcription Factor/genetics , Sp3 Transcription Factor/immunology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology
14.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948715

ABSTRACT

The distal bronchioles in Idiopathic Pulmonary Fibrosis (IPF) exhibit histopathological abnormalities such as bronchiolization, peribronchiolar fibrosis and honeycomb cysts that contribute to the overall architectural remodeling of lung tissue seen in the disease. Here we describe an additional histopathologic finding of epithelial desquamation in patients with IPF, wherein epithelial cells detach from the basement membrane of the distal bronchioles. To understand the mechanism driving this pathology, we performed spatial transcriptomics of the epithelial cells and spatial proteomics of the basement membrane of the distal bronchioles from IPF patients and patients with no prior history of lung disease. Our findings reveal a downregulation of cell junctional components, upregulation of epithelial-mesenchymal transition signatures and dysregulated basement membrane matrix in IPF distal bronchioles, facilitating epithelial desquamation. Further, functional assays identified regulation between Collagen IV in the matrix, and the junctional genes JUP and PLEC , that is crucial for maintaining distal bronchiolar homeostasis. In IPF, this balanced regulation between matrix and cell-junctions is disrupted, leading to loss of epithelial adhesion, peribronchiolar fibrosis and epithelial desquamation. Overall, our study suggests that in IPF the interplay between the loss of cell junctions and a dysregulated matrix results in desquamation of distal bronchiolar epithelium and lung remodeling, exacerbating the disease. One Sentence Summary: Two-way regulation of cell junctional proteins and matrix proteins drives cellular desquamation and fibrosis in the distal bronchioles of patients with Idiopathic Pulmonary Fibrosis.

16.
Dev Dyn ; 241(11): 1770-81, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22972683

ABSTRACT

BACKGROUND: The regulation of epithelial cell shape and orientation during lung branching morphogenesis is not clearly understood. Nonmuscle myosins regulate cell size, morphology, and planar cell polarity. Here, we test the hypothesis that nonmuscle myosin II (NM II) regulates lung epithelial morphology in a spatially restricted manner. RESULTS: Epithelial cell orientation at airway tips in fetal mouse lungs underwent a significant transformation at embryonic day (E) E17. Treatment of E15 lung explants with the NM II inhibitor blebbistatin increased airway branching, epithelial cell size, and the degree of anisotropy in epithelial cells lining the airway stalks. In cultured MLE-12 lung epithelial cells, blebbistatin increased cell velocity, but left the migratory response to FGF-10 unchanged. CONCLUSIONS: In the developing lung, NM II acts to constrain cell morphology and orientation, but may be suppressed at sites of branching and cell migration. The regulation of epithelial orientation may therefore undergo dynamic variations from E15 to E17.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Lung/growth & development , Lung/metabolism , Myosin Type II/metabolism , Animals , Cell Line , Cell Movement , Female , Mice , Pregnancy
17.
JCI Insight ; 8(14)2023 07 24.
Article in English | MEDLINE | ID: mdl-37279065

ABSTRACT

During alveolar repair, alveolar type 2 (AT2) epithelial cell progenitors rapidly proliferate and differentiate into flat AT1 epithelial cells. Failure of normal alveolar repair mechanisms can lead to loss of alveolar structure (emphysema) or development of fibrosis, depending on the type and severity of injury. To test if ß1-containing integrins are required during repair following acute injury, we administered E. coli lipopolysaccharide (LPS) by intratracheal injection to mice with a postdevelopmental deletion of ß1 integrin in AT2 cells. While control mice recovered from LPS injury without structural abnormalities, ß1-deficient mice had more severe inflammation and developed emphysema. In addition, recovering alveoli were repopulated with an abundance of rounded epithelial cells coexpressing AT2 epithelial, AT1 epithelial, and mixed intermediate cell state markers, with few mature type 1 cells. AT2 cells deficient in ß1 showed persistently increased proliferation after injury, which was blocked by inhibiting NF-κB activation in these cells. Lineage tracing experiments revealed that ß1-deficient AT2 cells failed to differentiate into mature AT1 epithelial cells. Together, these findings demonstrate that functional alveolar repair after injury with terminal alveolar epithelial differentiation requires ß1-containing integrins.


Subject(s)
Emphysema , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/toxicity , Escherichia coli , Lung , Integrins
18.
J Immunol ; 185(8): 4896-903, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20861353

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a frequent complication of preterm birth. This chronic lung disease results from arrested saccular airway development and is most common in infants exposed to inflammatory stimuli. In experimental models, inflammation inhibits expression of fibroblast growth factor-10 (FGF-10) and impairs epithelial-mesenchymal interactions during lung development; however, the mechanisms connecting inflammatory signaling with reduced growth factor expression are not yet understood. In this study we found that soluble inflammatory mediators present in tracheal fluid from preterm infants can prevent saccular airway branching. In addition, LPS treatment led to local production of mediators that inhibited airway branching and FGF-10 expression in LPS-resistant C.C3-Tlr4(Lpsd)/J fetal mouse lung explants. Both direct NF-κB activation and inflammatory cytokines (IL-1ß and TNF-α) that activate NF-κB reduced FGF-10 expression, whereas chemokines that signal via other inflammatory pathways had no effect. Mutational analysis of the FGF-10 promoter failed to identify genetic elements required for direct NF-κB-mediated FGF-10 inhibition. Instead, NF-κB activation appeared to interfere with the normal stimulation of FGF-10 expression by Sp1. Chromatin immunoprecipitation and nuclear coimmunoprecipitation studies demonstrated that the RelA subunit of NF-κB and Sp1 physically interact at the FGF-10 promoter. These findings indicate that inflammatory signaling through NF-κB disrupts the normal expression of FGF-10 in fetal lung mesenchyme by interfering with the transcriptional machinery critical for lung morphogenesis.


Subject(s)
Fibroblast Growth Factor 10/biosynthesis , Lung/embryology , NF-kappa B/metabolism , Protein Kinases/metabolism , Animals , Chorioamnionitis/metabolism , Chromatin Immunoprecipitation , Female , Gene Expression , Gene Expression Regulation , Humans , Immunohistochemistry , Immunoprecipitation , Infant, Newborn , Lung/metabolism , Mice , Mice, Inbred BALB C , Pregnancy , Premature Birth , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
19.
Pediatr Rev ; 33(4): 156-63; quiz 163, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22474112

ABSTRACT

Although commonly asymptomatic, congenital CMV infection is the leading cause of nonhereditary SNHL. Other sequelae that may be evident only after the neonatal period can include chorioretinitis, neurodevelopmental delay with mental or motor impairment, and microcephaly. (13) • Congenital CMV infection is confirmed by detection of the virus in urine, blood, or saliva within the first 3 weeks of life by culture or polymerase chain reaction. A positive test does not necessarily confirm symptomatic CMV disease or need for treatment. (13) • Postnatal CMV infections transmitted through human milk have been reported and may be clinically relevant in extremely premature infants; however, the risk-benefit ratio of pasteurizing human milk for the prevention of postnatal CMV infection is unclear. • Ganciclovir, valganciclovir, foscarnet, cidofovir, and CMV hyperimmune globulin are effective in treating or preventing CMV infections in the immunocompromised host, but require close monitoring for associated toxicities. Treatment for congenital CMV is associated with significant toxicity and uncertain effectiveness. • Based on strong evidence, anticipatory guidance for congenital CMV infection should include hearing tests and neurodevelopmental assessments until school age. (3) In patients with symptomatic congenital CMV infection, lifelong ophthalmologic screening should be included. (4) • Based primarily on consensus, owing to lack of relevant clinical studies, it is not recommended to withhold human milk produced by CMV-seropositive mothers from healthy term infants. (5)(6) • Based on some research evidence, as well as consensus, treatment for congenital CMV is recommended only in symptomatic infants with central nervous system involvement. (9)


Subject(s)
Cytomegalovirus Infections , Antiviral Agents/therapeutic use , Child , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/etiology , Cytomegalovirus Infections/therapy , Cytomegalovirus Vaccines , Global Health , Humans , Immunocompromised Host , Infant , Infant, Newborn , Infectious Disease Transmission, Vertical , Postoperative Complications/diagnosis , Postoperative Complications/drug therapy , Transplantation
20.
JCI Insight ; 7(15)2022 08 08.
Article in English | MEDLINE | ID: mdl-35763345

ABSTRACT

Integrins - the principal extracellular matrix (ECM) receptors of the cell - promote cell adhesion, migration, and proliferation, which are key events for cancer growth and metastasis. To date, most integrin-targeted cancer therapeutics have disrupted integrin-ECM interactions, which are viewed as critical for integrin functions. However, such agents have failed to improve cancer patient outcomes. We show that the highly expressed integrin ß1 subunit is required for lung adenocarcinoma development in a carcinogen-induced mouse model. Likewise, human lung adenocarcinoma cell lines with integrin ß1 deletion failed to form colonies in soft agar and tumors in mice. Mechanistically, we demonstrate that these effects do not require integrin ß1-mediated adhesion to ECM but are dependent on integrin ß1 cytoplasmic tail-mediated activation of focal adhesion kinase (FAK). These studies support a critical role for integrin ß1 in lung tumorigenesis that is mediated through constitutive, ECM binding-independent signaling involving the cytoplasmic tail.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Adenocarcinoma/genetics , Adenocarcinoma of Lung/genetics , Animals , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Integrins , Ligands , Lung Neoplasms/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL