ABSTRACT
Randomized comparison between KTd and KRd induction followed by second randomization to carfilzomib in transplant-ineligable patients with newly diagnosed multiple myeloma.
Subject(s)
Multiple Myeloma , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Dexamethasone/therapeutic use , Induction Chemotherapy , Lenalidomide/therapeutic use , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapyABSTRACT
In Multiple Myeloma (MM) the finely tuned homeostasis of the bone marrow (BM) microenvironment is disrupted. Evasion of programmed cell death (apoptosis) represents a hallmark of cancer. Besides genetic aberrations, the supportive and protective MM BM milieu, which is constituted by cytokines and growth factors, intercellular and cell: extracellular matrix (ECM) interactions and exosomes, in particular, plays a key role in the abundance of pro-survival members of the Bcl-2 family (i.e., Mcl-1, Bcl-2, and Bcl-xL) in tumor cells. Moreover, microenvironmental cues have also an impact on stability- regulating post-translational modifications of anti-apoptotic proteins including de/phosphorylation, polyubiquitination; on their intracellular binding affinities, and localization. Advances of our molecular knowledge on the escape of cancer cells from apoptosis have informed the development of a new class of small molecules that mimic the action of BH3-only proteins. Indeed, approaches to directly target anti-apoptotic Bcl-2 family members are among today's most promising therapeutic strategies and BH3-mimetics (i.e., venetoclax) are currently revolutionizing not only the treatment of CLL and AML, but also hold great therapeutic promise in MM. Furthermore, approaches that activate apoptotic pathways indirectly via modification of the tumor microenvironment have already entered clinical practice. The present review article will summarize our up-to-date knowledge on molecular mechanisms by which the MM BM microenvironment, cytokines, and growth factors in particular, mediates tumor cell evasion from apoptosis. Moreover, it will discuss some of the most promising science- derived therapeutic strategies to overcome Bcl-2- mediated tumor cell survival in order to further improve MM patient outcome.
Subject(s)
Bone Marrow , Multiple Myeloma , Humans , Apoptosis , bcl-X Protein/metabolism , Bone Marrow/metabolism , Cell Line, Tumor , Cytokines/metabolism , Multiple Myeloma/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor MicroenvironmentABSTRACT
BACKGROUND: Selinexor, a selective inhibitor of nuclear export compound that blocks exportin 1 (XPO1) and forces nuclear accumulation and activation of tumor suppressor proteins, inhibits nuclear factor κB, and reduces oncoprotein messenger RNA translation, is a potential novel treatment for myeloma that is refractory to current therapeutic options. METHODS: We administered oral selinexor (80 mg) plus dexamethasone (20 mg) twice weekly to patients with myeloma who had previous exposure to bortezomib, carfilzomib, lenalidomide, pomalidomide, daratumumab, and an alkylating agent and had disease refractory to at least one proteasome inhibitor, one immunomodulatory agent, and daratumumab (triple-class refractory). The primary end point was overall response, defined as a partial response or better, with response assessed by an independent review committee. Clinical benefit, defined as a minimal response or better, was a secondary end point. RESULTS: A total of 122 patients in the United States and Europe were included in the modified intention-to-treat population (primary analysis), and 123 were included in the safety population. The median age was 65 years, and the median number of previous regimens was 7; a total of 53% of the patients had high-risk cytogenetic abnormalities. A partial response or better was observed in 26% of patients (95% confidence interval, 19 to 35), including two stringent complete responses; 39% of patients had a minimal response or better. The median duration of response was 4.4 months, median progression-free survival was 3.7 months, and median overall survival was 8.6 months. Fatigue, nausea, and decreased appetite were common and were typically grade 1 or 2 (grade 3 events were noted in up to 25% of patients, and no grade 4 events were reported). Thrombocytopenia occurred in 73% of the patients (grade 3 in 25% and grade 4 in 33%). Thrombocytopenia led to bleeding events of grade 3 or higher in 6 patients. CONCLUSIONS: Selinexor-dexamethasone resulted in objective treatment responses in patients with myeloma refractory to currently available therapies. (Funded by Karyopharm Therapeutics; STORM ClinicalTrials.gov number, NCT02336815.).
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Dexamethasone/administration & dosage , Hydrazines/administration & dosage , Karyopherins/antagonists & inhibitors , Multiple Myeloma/drug therapy , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Triazoles/administration & dosage , Administration, Oral , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor/blood , Dexamethasone/adverse effects , Drug Administration Schedule , Drug Resistance, Neoplasm , Female , Humans , Hydrazines/adverse effects , Intention to Treat Analysis , Male , Middle Aged , Survival Analysis , Thrombocytopenia/chemically induced , Triazoles/adverse effects , Young Adult , Exportin 1 ProteinABSTRACT
BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a dismal prognosis. There is increasing interest in targeting chromatin regulatory pathways in difficult-to-treat cancers. In preliminary studies, we found that KDM4A (lysine-specific histone demethylase 4) was overexpressed in MPM. METHODS: KDM4A protein expression was determined by immunohistochemistry or immunoblotting. Functional inhibition of KDM4A by targeted knockdown and small molecule drugs was correlated to cell growth using cell lines and a xenograft mouse model. Gene expression profiling was performed to identify KDM4A-dependent signature pathways. RESULTS: Levels of KDM4A were found to be significantly elevated in MPM patients compared to normal mesothelial tissue. Inhibiting the enzyme activity efficiently reduced cell growth in vitro and reduced tumour growth in vivo. KDM4A inhibitor-induced apoptosis was further enhanced by the BH3 mimetic navitoclax. KDM4A expression was associated with pathways involved in cell growth and DNA repair. Interestingly, inhibitors of the DNA damage and replication checkpoint regulators CHK1 (prexasertib) and WEE1 (adavosertib) within the DNA double-strand break repair pathway, cooperated in the inhibition of cell growth. CONCLUSIONS: The results establish a novel and essential role for KDM4A in growth in preclinical models of MPM and identify potential therapeutic approaches to target KDM4A-dependent vulnerabilities.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Mesothelioma, Malignant/pathology , Up-Regulation , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/metabolism , Mice , Pyrazines/administration & dosage , Pyrazines/pharmacology , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Pyrimidinones/administration & dosage , Pyrimidinones/pharmacology , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Up-Regulation/drug effects , Xenograft Model Antitumor AssaysABSTRACT
BACKGROUND: Increased bone turnover is frequently observed in advanced cancer and predominantly related to bone metastases or therapy. Cachexia represents an important cause of morbidity and mortality in cancer patients. Key features are weight loss, muscle wasting and chronic inflammation, which induce profound metabolic changes in several organs, including the bone. However, whether cachexia contributes to abnormal bone metabolism in cancer patients is unknown. Aim of the present study was to determine the potential correlation of bone turnover markers with body composition and laboratory parameters in treatment-naïve cancer patients. METHODS: In this cross-sectional study we measured the levels of carboxy terminal telopeptide of collagen (CTX), an indicator of bone resorption, as well as osteocalcin (Ocn) and procollagen type I N-terminal propeptide (PINP), indicators of bone formation, in 52 cancer patients and correlated with body composition and laboratory parameters. Univariate and multivariate logistic analysis were performed to identify determinants of negative bone remodeling balance, estimated by CTX/Ocn and CTX/PINP ratio. RESULTS: Based on weight loss, body mass index and muscle mass, patients were divided into a cachectic (59.6%) and a control (40.4%) group. After correcting for the presence of bone metastases, our results showed a significant upregulation of CTX in cachectic patients compared to non-cachectic cancer patients (median 0.38 vs 0.27 ng/mL, p < 0.05), with no difference in Ocn and PINP levels (mean 14 vs. 16 ng/ml, p = 0.2 and median 32 vs. 26 µg/L, p = 0.5, respectively). In addition, the CTX/Ocn and the CTX/PINP ratio were indicative of bone resorption in 68% and 60% of cachexia patients, respectively (vs. 20% and 31% in the control group, p = 0.002 and p = 0.06). The main determinants of the unbalanced bone turnover were hypoalbuminemia for the CTX/Ocn ratio (OR 19.8, p < 0.01) and high CRP for the CTX/PINP ratio (OR 5.3, p < 0.01) in the multivariate regression analysis. CONCLUSIONS: CTX is substantially higher in cachectic patients compared to non-cachectic oncological patients and hypoalbuminemia as well as elevated CRP concentrations are independent predictors of a negative bone remodeling balance in cancer patients. These results strongly indicate that cachexia correlates with exacerbated bone turnover in cancer.
Subject(s)
Bone Remodeling/physiology , Cachexia/complications , Neoplasms/complications , Case-Control Studies , Cross-Sectional Studies , Humans , Male , Middle Aged , Neoplasms/pathologyABSTRACT
BACKGROUND: Selinexor is an oral, selective nuclear export inhibitor. STORM was a phase 2b, single-arm, open-label, multicenter trial of selinexor with low dose dexamethasone in patients with penta-exposed relapsed/refractory multiple myeloma (RRMM) that met its primary endpoint, with overall response of 26% (95% confidence interval [CI], 19 to 35%). Health-related quality of life (HRQoL) was a secondary endpoint measured using the Functional Assessment of Cancer Therapy - Multiple Myeloma (FACT-MM). This study examines impact of selinexor treatment on HRQoL of patients treated in STORM and reports two approaches to calculate minimal clinically important differences for the FACT-MM. METHODS: FACT-MM data were collected at baseline, on day 1 of each 4-week treatment cycle, and at end of treatment (EOT). Changes from baseline were analyzed for the FACT-MM total score, FACT-trial outcome index (TOI), FACT-General (FACT-G), and the MM-specific domain using mixed-effects regression models. Two approaches for evaluating minimal clinically important differences were explored: the first defined as 10% of the instrument range, and the second based on estimated mean baseline differences between Eastern Cooperative Oncology Group performance status (ECOG PS) scores. Post-hoc difference analysis compared change in scores from baseline to EOT for treatment responders and non-responders. RESULTS: Eighty patients were included in the analysis; the mean number of prior therapies was 7.9 (standard deviation [SD] 3.1), and mean duration of myeloma was 7.6 years (SD 3.4). Each exploratory minimal clinically important difference threshold yielded consistent results whereby most patients did not experience HRQoL decline during the first six cycles of treatment (range: 53.9 to 75.7% for the first approach; range: 52.6 to 72.9% for the second). Treatment responders experienced less decline in HRQoL from baseline to EOT than non-responders, which was significant for the FACT-G, but not for other scores. CONCLUSION: The majority of patients did not experience decline in HRQoL based on minimal clinically important differences during early cycles of treatment with selinexor and dexamethasone in the STORM trial. An anchor-based approach utilizing patient-level data (ECOG PS score) to define minimal clinically important differences for the FACT-MM gave consistent results with a distribution-based approach. TRIAL REGISTRATION: This trial was registered on ClinicalTrials.gov under the trial-ID NCT02336815 on January 8, 2015.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm , Multiple Myeloma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Quality of Life , Adult , Aged , Aged, 80 and over , Dexamethasone/administration & dosage , Female , Follow-Up Studies , Humans , Hydrazines/administration & dosage , Male , Middle Aged , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/pathology , Prognosis , Survival Rate , Triazoles/administration & dosageSubject(s)
Multiple Myeloma , Humans , Multiple Myeloma/metabolism , Plasma Cells , Macrophages/metabolismABSTRACT
PURPOSE: Recent studies have emphasized a key role for the anti-apoptotic Bcl-2 family member Mcl-1 in conferring tumor cell survival and drug resistance in breast cancer (BC). Mcl-1 inhibitors, such as the BH3-mimetic EU-5346, therefore represent an exciting new class of targeting agents and are a current focus of widespread cancer-drug development efforts. METHODS: ONCOMINE analysis was utilized to compare expression profiles of Bcl-2 family members across all major BC subgroups. Potential toxicities of EU-5346 were evaluated using iPS-generated cardiomyocytes, blood cells and astrocytes. The anti-BC cell activity of EU-5346-based therapies was evaluated using [3H]-thymidine uptake and spheroid-forming assays as well as immunoblotting and the Chou-Talalay method. Protein level-based activity of EU-5346, the specific anti-Bcl-2 inhibitor ABT-199 and the specific anti-Bcl-xL inhibitor WEHI-539 was verified in Mcl-1Δ/null versus Mcl-1wt/wt MEFs. RESULTS: We previously demonstrated significant anti-tumor activity of EU-5346 in all BC subtypes. Our present results go further and suggest that EU-5346 may induce limited adverse events such as cardiotoxicity, hematotoxicity, and neurotoxicity, frequently observed with other BH3 mimetics. As demonstrated by our mathematical scoring model, the prediction of EU-5643-induced IC50 not only relies on the protein level of Mcl-1 but also on Bak, Bim, and Noxa. Synergistic anti-BC activity of low-dose EU-5346 with the BH3 mimetics ABT-199 or WEHI-539 was observed only in those BC cells expressing Bcl-2 or Bcl-xL, respectively. Similarly, when combined with tamoxifen or trastuzumab, low-dose EU-5346 induced significant anti-BC activity in hormone receptor positive or Her2-positive BC cells, respectively. Finally, EU-5346 in combination with paclitaxel induced synergistic anti-BC activity in both paclitaxel-sensitive and paclitaxel-resistant TNBC cells. CONCLUSION: These data strongly support the further clinical development of EU-5346 to improve BC patient survival.
Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cardiotoxicity , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Combinations , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitory Concentration 50 , Molecular Targeted Therapy , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolismABSTRACT
Introduction: Significant advances have been made during the last two decades in terms of new therapeutic options but also of innovative approaches to diagnosis and management of multiple myeloma (MM). While patient survival has been significantly prolonged, most patients relapse. Including the milestone approval of the first kinase inhibitor imatinib mesylate for CML in 2001, 48 small molecule protein kinase (PK) inhibitors have entered clinical practice until now. However, no PK inhibitor has been approved for MM therapy yet. Areas covered: This review article summarizes up-to-date knowledge on the pathophysiologic role of PKs in MM. Derived small molecules targeting receptor tyrosine kinases (RTKs), the Ras/Raf/MEK/MAPK- pathway, the PI3K/Akt/mTOR- pathway as well as Bruton tyrosine kinase (BTK), Aurora kinases (AURK), and cyclin-dependent kinases (CDKs) are most promising. Preclinical as well as early clinical data focusing on these molecules will be presented and critically reviewed. Expert opinion: Current MM therapy is directed against general vulnerabilities. Novel therapeutic strategies, inhibition of PKs in particular, are directed to target tumor-specific driver aberrations such as genetic abnormalities and microenvironment-driven deregulations. Results of ongoing Precision Medicine trials with PK inhibitors alone or in combination with other agents are eagerly awaited and hold the promise of once more improving MM patient outcome.
Subject(s)
Antineoplastic Agents/therapeutic use , Multiple Myeloma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Humans , Multiple Myeloma/metabolism , Signal Transduction/drug effects , Tumor Microenvironment/drug effectsABSTRACT
A promising approach to the treatment of multiple myeloma (MM) involves agents that target not only the myeloma cells directly, but also the tumor microenvironment which promotes tumor cell growth, angiogenesis, and MM bone disease. Here we investigate the orally available multikinase inhibitor, regorafenib (BAY 73-4506), for its therapeutic efficacy in MM. Regorafenib is a potent inhibitor of angiogenic (VEGFR 1-3, PDGFR-b) as well as oncogenic (c-KIT, RET, FGFR, Raf) kinases. We show that regorafenib induces apoptosis in all MM cell lines at below clinically achievable concentrations. Regorafenib overcomes the growth advantage conferred by a stroma cell MM and an endothelial cell MM, co-culture systems, and abrogates growth factor-stimulated MEK, ERK, and AKT phosphorylation at nanomolar to micromolar concentrations. Moreover, it inhibits endothelial cell growth and tubule formation, abrogates both VEGF secretion and VEGF-induced MM cell migration, inhibits osteoclastogenesis, and shows synergistic cytotoxicity with dexamethasone, the immunomodulatory drug pomalidomide, and the p110δ inhibitor idelalisib. Most importantly, regorafenib significantly delays tumor growth in a xenograft mouse model of human MM. These results provide the rationale for further clinical evaluation of regorafenib, alone and in combination, in the treatment of MM.
Subject(s)
Multiple Myeloma/drug therapy , Phenylurea Compounds/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Pyridines/administration & dosage , Administration, Oral , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Dose-Response Relationship, Drug , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , Mice, Nude , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Phenylurea Compounds/metabolism , Protein Kinase Inhibitors/metabolism , Pyridines/metabolism , Xenograft Model Antitumor Assays/methodsABSTRACT
In this issue of Blood, Sehgal et al report on the clinical and pharmacodynamics analysis of pomalidomide dosing strategies in multiple myeloma (MM) and their impact on immune activation and cereblon targets. The particular novelty of this study lies in the direct correlation of immune effects triggered by pomalidomide with clinical responses in MM patients. Results of this study will stimulate many additional studies.
Subject(s)
Angiogenesis Inhibitors/therapeutic use , Multiple Myeloma/drug therapy , Thalidomide/analogs & derivatives , Female , Humans , MaleABSTRACT
BACKGROUND: Molecular mechanisms leading to the adaptation of breast cancer (BC) cells to hypoxia are largely unknown. The anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) is frequently amplified in BC; and elevated Mcl-1 levels have been correlated with poor prognosis. Here we investigated the pathophysiologic role of Mcl-1 in Her2-positive BC cells under hypoxic conditions. METHODS: RNA interference and a novel small molecule inhibitor, EU-5346, were used to examine the role of Mcl-1 in Her2-positive BC cell lines and primary BC cells (sensitive or intrinsically resistant to Her2 inhibitors) under hypoxic conditions (using a hypoxic incubation chamber). Mechanisms-of-action were investigated by RT-PCR, mitochondrial isolation, as well as immunoprecipitation/blotting analysis, and microscopy. The specificity against Mcl-1 of the novel small molecule inhibitor EU5346 was verified in Mcl-1(Δ/null) versus Mcl-1(wt/wt) Murine Embryonic Fibroblasts (MEFs). Proliferation, survival, and spheroid formation were assessed in response to Mcl-1 and Her2 inhibition. RESULTS: We demonstrate for a strong correlation between high Mcl-1 protein levels and hypoxia, predominantly in Her2-positive BC cells. Surprisingly, genetic depletion of Mcl-1 decreased Her2 and Hif-1α levels followed by inhibition of BC cell survival. In contrast, Mcl-1 protein levels were not downregulated after genetic depletion of Her2 indicating a regulatory role of Mcl-1 upstream of Her2. Indeed, Mcl-1 and Her2 co-localize within the mitochondrial fraction and form a Mcl-1/Her2- protein complex. Similar to genetically targeting Mcl-1 the novel small molecule Mcl-1 inhibitor EU-5346 induced cell death and decreased spheroid formation in Her2-positive BC cells. Of interest, EU-5346 induced ubiquitination of Mcl-1- bound Her2 demonstrating a previously unknown role for Mcl-1 to stabilize Her2 protein levels. Importantly, targeting Mcl-1 was also active in Her2-positive BC cells resistant to Her2 inhibitors, including a brain-primed Her2-positive cell line. CONCLUSION: Our data demonstrate a critical role of Mcl-1 in Her2-positive BC cell survival under hypoxic conditions and provide the preclinical framework for the therapeutic use of novel Mcl-1- targeting agents to improve patient outcome in BC.
Subject(s)
Breast Neoplasms/genetics , Cell Hypoxia/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Receptor, ErbB-2/genetics , Animals , Apoptosis/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , RNA Interference , Signal Transduction/geneticsABSTRACT
Unprecedented advances in multiple myeloma (MM) therapy during the last 15 years are predominantly based on our increasing understanding of the pathophysiologic role of the bone marrow (BM) microenvironment. Indeed, new treatment paradigms, which incorporate thalidomide, immunomodulatory drugs (IMiDs), and proteasome inhibitors, target the tumor cell as well as its BM microenvironment. Ongoing translational research aims to understand in more detail how disordered BM-niche functions contribute to MM pathogenesis and to identify additional derived targeting agents. One of the most exciting advances in the field of MM treatment is the emergence of immune therapies including elotuzumab, daratumumab, the immune checkpoint inhibitors, Bispecific T-cell engagers (BiTes), and Chimeric antigen receptor (CAR)-T cells. This chapter will review our knowledge on the pathophysiology of the BM microenvironment and discuss derived novel agents that hold promise to further improve outcome in MM.
Subject(s)
Multiple Myeloma/pathology , Multiple Myeloma/physiopathology , Tumor Microenvironment , Animals , Bone Marrow/pathology , Bone Marrow/physiopathology , HumansABSTRACT
INTRODUCTION: Despite remarkable therapeutic advances over the last two decades, which have resulted in dramatic improvements in patient survival, multiple myeloma (MM) is still considered an incurable disease. Therefore, there is a high need for new treatment strategies. Genetically engineered/redirected chimeric antigen receptor (CAR) T cells may represent the most compelling modality of immunotherapy for cancer treatment in general, and MM in particular. Indeed, unprecedented response rates have led to the recent approvals of the first two BCMA-targeted CAR T cell products idecabtagene-vicleucel ('Ide-cel') and ciltacabtagene-autoleucel ('Cilta-Cel') for the treatment of heavily pretreated MM patients. In addition, both are emerging as a new standard-of-care also in earlier lines of therapy. AREAS COVERED: This article briefly reviews the history of the preclinical development of CAR T cells, with a particular focus on Cilta-cel. Moreover, it summarizes the newest clinical data on Cilta-cel and discusses strategies to further improve its activity and reduce its toxicity. EXPERT OPINION: Modern next-generation immunotherapy is continuously transforming the MM treatment landscape. Despite several caveats of CAR T cell therapy, including its toxicity, costs, and limited access, prolonged disease-free survival and potential cure of MM are finally within reach.
Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Immunotherapy, Adoptive/methodsABSTRACT
BACKGROUND: Skeletal morbidity in patients with cancer has a major impact on the quality of life, and preserving bone health while improving outcomes is an important goal of modern antitumor treatment strategies. Despite their widespread use in early disease stages, the effects of immune checkpoint inhibitors (ICIs) on the skeleton are still poorly defined. Here, we initiated a comprehensive investigation of the impact of ICIs on bone health by longitudinal assessment of bone turnover markers in patients with cancer and by validation in a novel bioengineered 3D model of bone remodeling. METHODS: An exploratory longitudinal study was conducted to assess serum markers of bone resorption (C-terminal telopeptide, CTX) and formation (procollagen type I N-terminal propeptide, PINP, and osteocalcin, OCN) before each ICI application (programmed cell death 1 (PD1) inhibitor or programmed death-ligand 1 (PD-L1) inhibitor) for 6 months or until disease progression in patients with advanced cancer and no evidence of bone metastases. To validate the in vivo results, we evaluated osteoclast (OC) and osteoblast (OB) differentiation on treatment with ICIs. In addition, their effect on bone remodeling was assessed by immunohistochemistry, confocal microscopy, and proteomics analysis in a dynamic 3D bone model. RESULTS: During the first month of treatment, CTX levels decreased sharply but transiently. In contrast, we observed a delayed increase of serum levels of PINP and OCN after 4 months of therapy. In vitro, ICIs impaired the maturation of preosteoclasts by inhibiting STAT3/NFATc1 signaling but not JNK, ERK, and AKT while lacking any direct effect on osteogenesis. However, using our bioengineered 3D bone model, which enables the simultaneous differentiation of OB and OC precursor cells, we confirmed the uncoupling of the OC/OB activity on exposure to ICIs by demonstrating impaired OC maturation along with increased OB differentiation. CONCLUSION: Our study indicates that the inhibition of the PD1/PD-L1 signaling axis interferes with bone turnover and may exert a protective effect on bone by indirectly promoting osteogenesis.
Subject(s)
Bone Remodeling , Immune Checkpoint Inhibitors , Humans , Bone Remodeling/drug effects , Male , Female , Prospective Studies , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Aged , Longitudinal Studies , Neoplasms/drug therapy , AdultABSTRACT
Deregulation of transcription factors (TFs) leading to uncontrolled proliferation of tumor cells within the microenvironment represents a hallmark of cancer. However, the biological and clinical impact of transcriptional interference, particularly in multiple myeloma (MM) cells, remains poorly understood. The present study shows for the first time that MYC and JUNB, two crucial TFs implicated in MM pathogenesis, orchestrate distinct transcriptional programs. Specifically, our data revealed that expression levels of MYC, JUNB, and their respective downstream targets do not correlate and that their global chromatin-binding patterns are not significantly overlapping. Mechanistically, MYC expression was not affected by JUNB knockdown, and conversely, JUNB expression and transcriptional activity were not affected by MYC knockdown. Moreover, suppression of MYC levels in MM cells via targeting the master regulator BRD4 by either siRNA-mediated knockdown or treatment with the novel proteolysis targeting chimera (PROTAC) MZ-1 overcame bone marrow (BM) stroma cell/IL-6-induced MYC- but not MEK-dependent JUNB-upregulation and transcriptional activity. Consequently, targeting of the two non-overlapping MYC- and JUNB-transcriptoms by MZ-1 in combination with genetic or pharmacological JUNB-targeting approaches synergistically enhanced MM cell death, both in 2D and our novel dynamic 3D models of the BM milieu as well as in murine xenografts. In summary, our data emphasize the opportunity to employ MYC and JUNB dual-targeting treatment strategies in MM as another exciting approach to further improve patient outcomes.
Subject(s)
Gene Expression Regulation, Neoplastic , Multiple Myeloma , Proto-Oncogene Proteins c-myc , Transcription Factors , Multiple Myeloma/genetics , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Humans , Animals , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Proto-Oncogene Proteins c-jun/metabolism , Proto-Oncogene Proteins c-jun/geneticsABSTRACT
Understanding the impact of induction and maintenance therapy on patients' quality of life (QoL) is important for treatment selection. This study aims to compare patient-reported QoL between patients treated with KTd or KRd induction therapy and K maintenance therapy or observation. QoL was assessed using the EORTC QOL-C 30 and QOL-MY20 questionnaires in the AGMT-02 study, in which 123 patients with newly diagnosed transplant ineligible multiple myeloma were randomized to nine cycles of either KTd or KRd induction therapy, followed by 12 cycles of K maintenance therapy, or observation. Longitudinal assessments showed statistically significant improvements in global health-related QoL, various disease symptoms and pain for both treatment regimens. KTd improved insomnia and fatigue, and KRd improved physical functioning. Cross-sectional comparisons indicated a "slight" superiority of KTd over KRd in several scales, with the exception of higher neuropathy scores with KTd. During maintenance, longitudinal comparisons showed no statistically significant changes. Cross-sectional comparisons revealed a "slight" improvement in cognitive functioning during carfilzomib therapy, but a worsening in most other QoL scales. Induction therapy led to improvements in most QoL items, while maintenance therapy with K maintenance was associated with "slight" or "moderate" impairments in several QoL scales compared with the observation group.
ABSTRACT
Bortezomib therapy has proven successful for the treatment of relapsed and/or refractory multiple myeloma (MM); however, prolonged treatment is associated with toxicity and development of drug resistance. Here, we show that the novel proteasome inhibitor NPI-0052 induces apoptosis in MM cells resistant to conventional and Bortezomib therapies. NPI-0052 is distinct from Bortezomib in its chemical structure, effects on proteasome activities, mechanisms of action, and toxicity profile against normal cells. Moreover, NPI-0052 is orally bioactive. In animal tumor model studies, NPI-0052 is well tolerated and prolongs survival, with significantly reduced tumor recurrence. Combining NPI-0052 and Bortezomib induces synergistic anti-MM activity. Our study therefore provides the rationale for clinical protocols evaluating NPI-0052, alone and together with Bortezomib, to improve patient outcome in MM.