Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Publication year range
1.
Immunity ; 46(3): 333-335, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28329695

ABSTRACT

Caspases have important functions beyond their established role in driving inflammation and apoptosis. In this issue of Immunity, Wang et al. (2017) demonstrate that inflammasome-triggered caspases cleave and inactivate the DNA sensor cGAS, thus restricting the type I interferon response to cytosolic DNA.


Subject(s)
Caspases , Nucleotidyltransferases/genetics , Cytosol/immunology , Humans , Inflammasomes , Interferon Type I
2.
Haematologica ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546698

ABSTRACT

Chimeric antigen receptor (CAR-) T cell therapy causes serious side effects including cytokine release syndrome (CRS). CRS-related coagulopathy is associated with hypofibrinogenemia that is thus far considered the result of disseminated intravascular coagulation (DIC) and liver dysfunction. We investigated incidence and risk factors for hypofibrinogenemia in 41 consecutive adult patients with hematologic malignancies (median age 69 years, range 38-83 years) receiving CAR-T cell therapy between 01/2020 and 05/2023 at the University Medical Center Regensburg. CRS occurred in 93% of patients and was accompanied by hypofibrinogenemia already from CRS grade 1. Yet, DIC and liver dysfunction mainly occurred in severe CRS (≥ grade 3). After an initial increase during CRS, fibrinogen levels dropped after administration of tocilizumab in a dose dependent manner (r = -0.44, p = 0.004). In contrast, patients who did not receive tocilizumab had increased fibrinogen levels. Logistic regression analysis identified tocilizumab as an independent risk factor for hypofibrinogenemia (odds ratio = 486, p < 0.001). We thus hypothesize that fibrinogen synthesis in CRS is upregulated in an interleukin-6-dependent acute phase reaction compensating for CRS-induced consumption of coagulation factors. Tocilizumab inhibits fibrinogen upregulation resulting in prolonged hypofibrinogenemia. These observations provide novel insights into the pathophysiology of hypofibrinogenemia following CAR-T cell therapy and emphasize the need for close fibrinogen monitoring after tocilizumab treatment of CRS.

3.
Ann Hematol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916740

ABSTRACT

Steroid-refractory acute graft-versus-host disease (aGvHD) is a serious complication after allogeneic hematopoietic stem cell transplantation, associated with significant mortality. Ruxolitinib was the first drug approved for aGvHD, based on results of the REACH2 trial; however, real-world data are limited. We retrospectively analyzed the safety and efficacy of ruxolitinib for treatment of aGvHD at our center from March 2016 to August 2022 and assessed biomarkers of risk. We identified 49 patients receiving ruxolitinib as second- (33/49), third- (11/49), fourth- (3/49), or fifth-line (2/49) treatment. Ruxolitinib was started on median day 11 (range, 7-21) after aGvHD onset; median duration of administration was 37 days (range, 20-86), with 10 patients continuing treatment at last follow-up. Median follow-up period was 501 days (range, 95-905). In the primary analysis at the 1-month assessment, overall response rate was 65%, and failure-free survival was 78%. Infectious complications ≥ CTCAE Grade III were observed in 10/49 patients within 1-month followup. Patients responding to ruxolitinib therapy required fewer steroids and exhibited lower levels of the serum biomarkers regenerating islet-derived protein 3-alpha, suppression of tumorigenicity 2, and the Mount Sinai Acute GVHD International Consortium algorithm probability. A univariate regression model revealed steroid-dependent aGvHD as a significant predictor of better response to ruxolitinib. Within 6-months follow-up, four patients experienced recurrence of underlying malignancy, and eight died due to treatment-related mortality. Overall, ruxolitinib was welltolerated and showed response in heavily pretreated patients, with results comparable to those of the REACH2 trial. Biomarkers may be useful predictors of response to ruxolitinib.

4.
Clin Infect Dis ; 77(10): 1432-1439, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37386935

ABSTRACT

BACKGROUND: Intestinal microbiome contributes to the pathophysiology of acute gastrointestinal (GI) graft-versus-host disease (GvHD) and loss of microbiome diversity influences the outcome of patients after allogeneic stem cell transplantation (SCT). Systemic broad-spectrum antibiotics have been identified as a major cause of early intestinal dysbiosis. METHODS: In 2017, our transplant unit at the university hospital in Regensburg changed the antibiotic strategy from a permissive way with initiation of antibiotics in all patients with neutropenic fever independent of the underlying cause and risk to a restrictive use in cases with high likelihood of cytokine release syndrome (eg, after anti-thymocyte globulin [ATG] therapy). We analyzed clinical data and microbiome parameters obtained 7 days after allogeneic SCT from 188 patients with ATG therapy transplanted in 2015/2016 (permissive cohort, n = 101) and 2918/2019 (restrictive cohort, n = 87). RESULTS: Restrictive antibiotic treatment postponed the beginning of antibiotic administration from 1.4 ± 7.6 days prior to 1.7 ± 5.5 days after SCT (P = .01) and significantly reduced the duration of antibiotic administration by 5.8 days (P < .001) without increase in infectious complications. Furthermore, we observed beneficial effects of the restrictive strategy compared with the permissive way on microbiome diversity (urinary 3-indoxylsulfate, P = .01; Shannon and Simpson indices, P < .001) and species abundance 7 days post-transplant as well as a positive trend toward a reduced incidence of severe GI GvHD (P = .1). CONCLUSIONS: Our data indicate that microbiota protection can be achieved by a more careful selection of neutropenic patients qualifying for antibiotic treatment during allogeneic SCT without increased risk of infectious complications.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Microbiota , Humans , Anti-Bacterial Agents/pharmacology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/drug therapy , Transplantation, Homologous/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/prevention & control , Graft vs Host Disease/etiology , Fever/etiology , Antilymphocyte Serum
5.
Clin Exp Immunol ; 213(1): 102-113, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36752300

ABSTRACT

Head and neck squamous cell carcinomas (HNSCCs) evade immune responses through multiple resistance mechanisms. Extracellular vesicles (EVs) released by the tumor and interacting with immune cells induce immune dysfunction and contribute to tumor progression. This study evaluates the clinical relevance and impact on anti-tumor immune responses of gene signatures expressed in HNSCC and associated with EV production/release. Expression levels of two recently described gene sets were determined in The Cancer Genome Atlas Head and Neck Cancer cohort (n = 522) and validated in the GSE65858 dataset (n = 250) as well as a recently published single-cell RNA sequencing dataset (n = 18). Clustering into HPV(+) and HPV(-) patients was performed in all cohorts for further analysis. Potential associations between gene expression levels, immune cell infiltration, and patient overall survival were analyzed using GEPIA2, TISIDB, TIMER, and the UCSC Xena browser. Compared to normal control tissues, vesiculation-related genes were upregulated in HNSCC cells. Elevated gene expression levels positively correlated (P < 0.01) with increased abundance of CD4(+) T cells, macrophages, neutrophils, and dendritic cells infiltrating tumor tissues but were negatively associated (P < 0.01) with the presence of B cells and CD8(+) T cells in the tumor. Expression levels of immunosuppressive factors NT5E and TGFB1 correlated with the vesiculation-related genes and might explain the alterations of the anti-tumor immune response. Enhanced expression levels of vesiculation-related genes in tumor tissues associates with the immunosuppressive tumor milieu and the reduced infiltration of B cells and CD8(+) T cells into the tumor.


Subject(s)
Extracellular Vesicles , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , CD8-Positive T-Lymphocytes , Papillomavirus Infections/genetics , Head and Neck Neoplasms/genetics , Prognosis , Tumor Microenvironment
6.
Haematologica ; 108(11): 2993-3000, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37259539

ABSTRACT

Intestinal immunoglobulin A (IgA) is strongly involved in microbiota homeostasis. Since microbiota disruption is a major risk factor of acute graft-versus-host disease (GvHD), we addressed the kinetics of intestinal IgA-positive (IgA+) plasma cells by immunohistology in a series of 430 intestinal biopsies obtained at a median of 1,5 months after allogeneic stem cell transplantation (allo-SCT) from 115 patients (pts) at our center. IgA+ plasma cells were located in the subepithelial lamina propria and suppressed in the presence of histological aGvHD (GvHD Lerner stage 0: 131+/-8 IgA+ plasma cells/mm2; stage 1-2: 108+/-8 IgA+ plasma cells/mm2; stage 3-4: 89+/-16 IgA+ plasma cells/mm2; P=0.004). Overall, pts with IgA+ plasma cells below median had an increased treatment related mortality (P=0.04). Time courses suggested a gradual recovery of IgA+ plasma cells after day 100 in the absence but not in the presence of GvHD. Vice versa IgA+ plasma cells above median early after allo-SCT were predictive of relapse and relapse-related mortality (RRM): pts with low IgA+ cells had a 15% RRM at 2 and at 5 years, while pts with high IgA+ cells had a 31% RRM at 2 years and more than 46% at 5 years; multivariate analysis indicated high IgA+ plasma cells in biopsies (hazard ratio =2.7; 95% confidence interval: 1.04-7.00) as independent predictors of RRM, whereas Lerner stage and disease stage themselves did not affect RRM. In contrast, IgA serum levels at the time of biopsy were not predictive for RRM. In summary, our data indicate that IgA+ cells are highly sensitive indicators of alloreaction early after allo-SCT showing association with TRM but also allowing prediction of relapse independently from the presence of overt GvHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Plasma Cells/pathology , Immunoglobulin A , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Homologous/adverse effects , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Chronic Disease , Recurrence
7.
Immunity ; 41(5): 722-36, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25464853

ABSTRACT

Regulatory T (Treg) cells maintain immune homeostasis and prevent inflammatory and autoimmune responses. During development, thymocytes bearing a moderately self-reactive T cell receptor (TCR) can be selected to become Treg cells. Several observations suggest that also in the periphery mature Treg cells continuously receive self-reactive TCR signals. However, the importance of this inherent autoreactivity for Treg cell biology remains poorly defined. To address this open question, we genetically ablated the TCR of mature Treg cells in vivo. These experiments revealed that TCR-induced Treg lineage-defining Foxp3 expression and gene hypomethylation were uncoupled from TCR input in mature Treg cells. However, Treg cell homeostasis, cell-type-specific gene expression and suppressive function critically depend on continuous triggering of their TCR.


Subject(s)
Autoimmunity/immunology , Forkhead Transcription Factors/biosynthesis , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation/immunology , Cell Lineage/immunology , DNA Methylation/immunology , DNA-Binding Proteins/genetics , Forkhead Transcription Factors/genetics , Inflammation/immunology , Interferon Regulatory Factors/biosynthesis , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiprotein Complexes/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Signal Transduction/immunology , TOR Serine-Threonine Kinases/metabolism , Thymocytes/cytology
8.
J Infect Dis ; 225(2): 190-198, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34427652

ABSTRACT

BACKGROUND: From a public health perspective, effective containment strategies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) should be balanced with individual liberties. METHODS: We collected 79 respiratory samples from 59 patients monitored in an outpatient center or in the intensive care unit of the University Hospital Regensburg. We analyzed viral load by quantitative real-time polymerase chain reaction, viral antigen by point-of-care assay, time since onset of symptoms, and the presence of SARS-CoV-2 immunoglobulin G (IgG) antibodies in the context of virus isolation from respiratory specimens. RESULTS: The odds ratio for virus isolation increased 1.9-fold for each log10 level of SARS-CoV-2 RNA and 7.4-fold with detection of viral antigen, while it decreased 6.3-fold beyond 10 days of symptoms and 20.0-fold with the presence of SARS-CoV-2 antibodies. The latter was confirmed for B.1.1.7 strains. The positive predictive value for virus isolation was 60.0% for viral loads >107 RNA copies/mL and 50.0% for the presence of viral antigen. Symptom onset before 10 days and seroconversion predicted lack of infectivity with negative predictive values of 93.8% and 96.0%. CONCLUSIONS: Our data support quarantining patients with high viral load and detection of viral antigen and lifting restrictive measures with increasing time to symptom onset and seroconversion. Delay of antibody formation may prolong infectivity.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2 , Seroconversion , Viral Load , Adult , Antibodies, Viral , Antigens, Viral , COVID-19/immunology , Female , Humans , Male , Public Health , RNA, Viral , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Severity of Illness Index
9.
Clin Infect Dis ; 74(4): 614-621, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34043764

ABSTRACT

BACKGROUND: Butyrogenic bacteria play an important role in gut microbiome homeostasis and intestinal epithelial integrity. Previous studies have demonstrated an association between administration of short-chain fatty acids like butyrate and protection from acute graft-vs-host disease (GvHD) after allogeneic stem cell transplantation (ASCT). METHODS: In the current study, we examined the abundance and butyrogenic capacity of butyrate-producing bacteria in 28 healthy donors and 201 patients after ASCT. We prospectively collected serial stool samples and performed polymerase chain reaction analysis of the butyrate-producing bacterial enzyme butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT) in fecal nucleic acid extracts. RESULTS: Our data demonstrate a strong and prolonged suppression of butyrogenic bacteria early in the course of ASCT. In a multivariable analysis, early use of broad-spectrum antibiotics before day 0 (day of transplantation) was identified as an independent factor associated with low BCoAT copy numbers (odds ratio, 0.370 [95% confidence interval, .175-.783]; P = .009). Diminished butyrogens correlated with other biomarkers of microbial diversity, such as low 3-indoxylsulfate levels, reduced abundance of Clostridiales and low inverse Simpson and effective Shannon indices (all P < .001). Low BCoAT copy numbers at GvHD-onset were correlated with GI-GvHD severity (P = .002) and associated with a significantly higher GvHD-associated mortality rate (P = .04). Furthermore, low BCoAT copy numbers at day 30 were associated with a significantly higher transplantation-related mortality rate (P = .02). CONCLUSIONS: Our results are consistent with the hypothesis that alterations in the microbiome play an important role in GvHD pathogenesis and that microbial parameters such as BCoAT might serve as biomarkers to identify patients at high risk of lethal GI-GvHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Bacteria , Butyrates , Graft vs Host Disease/microbiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Transplantation, Homologous/adverse effects
10.
Clin Infect Dis ; 75(1): e1063-e1071, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34694375

ABSTRACT

BACKGROUND: At the entry site of respiratory virus infections, the oropharyngeal microbiome has been proposed as a major hub integrating viral and host immune signals. Early studies suggested that infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with changes of the upper and lower airway microbiome, and that specific microbial signatures may predict coronavirus disease 2019 (COVID-19) illness. However, the results are not conclusive, as critical illness can drastically alter a patient's microbiome through multiple confounders. METHODS: To study oropharyngeal microbiome profiles in SARS-CoV-2 infection, clinical confounders, and prediction models in COVID-19, we performed a multicenter, cross-sectional clinical study analyzing oropharyngeal microbial metagenomes in healthy adults, patients with non-SARS-CoV-2 infections, or with mild, moderate, and severe COVID-19 (n = 322 participants). RESULTS: In contrast to mild infections, patients admitted to a hospital with moderate or severe COVID-19 showed dysbiotic microbial configurations, which were significantly pronounced in patients treated with broad-spectrum antibiotics, receiving invasive mechanical ventilation, or when sampling was performed during prolonged hospitalization. In contrast, specimens collected early after admission allowed us to segregate microbiome features predictive of hospital COVID-19 mortality utilizing machine learning models. Taxonomic signatures were found to perform better than models utilizing clinical variables with Neisseria and Haemophilus species abundances as most important features. CONCLUSIONS: In addition to the infection per se, several factors shape the oropharyngeal microbiome of severely affected COVID-19 patients and deserve consideration in the interpretation of the role of the microbiome in severe COVID-19. Nevertheless, we were able to extract microbial features that can help to predict clinical outcomes.


Subject(s)
COVID-19 , Microbiota , Adult , Critical Illness , Cross-Sectional Studies , Dysbiosis , Haemophilus , Humans , Neisseria , SARS-CoV-2
11.
Eur J Immunol ; 51(6): 1531-1534, 2021 06.
Article in English | MEDLINE | ID: mdl-33733474

ABSTRACT

Immunogenic cancer therapies, including radiation and hypomethylating agents, such as 5-azacytidine, rely on tumor cell-intrinsic activation of the RNA receptor RIG-I for their synergism with immune checkpoint inhibitors. Possible RIG-I ligands are small nuclear RNA (snRNA) and endogenous retroviral elements (ERV) leaking from the nucleus during programmed cell death.


Subject(s)
Azacitidine/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma/immunology , Receptors, Cell Surface/metabolism , Animals , Chemoradiotherapy , Disease Models, Animal , Drug Synergism , Humans , Melanoma/therapy , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Receptors, Cell Surface/genetics , Signal Transduction , Treatment Outcome
12.
Nat Immunol ; 11(1): 63-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19915568

ABSTRACT

Interleukin 1 beta (IL-1 beta) is a potent proinflammatory factor during viral infection. Its production is tightly controlled by transcription of Il1b dependent on the transcription factor NF-kappaB and subsequent processing of pro-IL-1 beta by an inflammasome. However, the sensors and mechanisms that facilitate RNA virus-induced production of IL-1 beta are not well defined. Here we report a dual role for the RNA helicase RIG-I in RNA virus-induced proinflammatory responses. Whereas RIG-I-mediated activation of NF-kappaB required the signaling adaptor MAVS and a complex of the adaptors CARD9 and Bcl-10, RIG-I also bound to the adaptor ASC to trigger caspase-1-dependent inflammasome activation by a mechanism independent of MAVS, CARD9 and the Nod-like receptor protein NLRP3. Our results identify the CARD9-Bcl-10 module as an essential component of the RIG-I-dependent proinflammatory response and establish RIG-I as a sensor able to activate the inflammasome in response to certain RNA viruses.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DEAD-box RNA Helicases/metabolism , Inflammation/physiopathology , Interleukin-1beta/metabolism , RNA Viruses/physiology , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Animals , CARD Signaling Adaptor Proteins , Caspase 1/metabolism , Cell Line , Cells, Cultured , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , Encephalomyocarditis virus/immunology , Encephalomyocarditis virus/physiology , Enzyme Activation , Enzyme-Linked Immunosorbent Assay , Host-Pathogen Interactions , Humans , Immunoblotting , Inflammation/immunology , Inflammation/virology , Interferon-Induced Helicase, IFIH1 , Mice , Mice, Knockout , Models, Biological , RNA Virus Infections/immunology , RNA Virus Infections/physiopathology , RNA Virus Infections/virology , RNA Viruses/immunology , Vesicular stomatitis Indiana virus/immunology , Vesicular stomatitis Indiana virus/physiology , bcl-X Protein/genetics , bcl-X Protein/metabolism
13.
Eur J Immunol ; 49(3): 504-507, 2019 03.
Article in English | MEDLINE | ID: mdl-30585320

ABSTRACT

Patients with X-linked lymphoproliferative syndrome type 2 (XLP-2) (BIRC4 deficiency) suffer from hyperinflammation often observed during the conditioning regimen prior to allogeneic bone marrow transplant. This article shows that in mice hematopoietic recipient cells contribute to graft-versus-host disease by the secretion of elevated levels of proinflammatory cytokines during engraftment when BIRC4 is absent.


Subject(s)
Genetic Diseases, X-Linked/therapy , Graft vs Host Disease/metabolism , Hematopoietic Stem Cell Transplantation/methods , Lymphoproliferative Disorders/therapy , T-Lymphocytes/metabolism , Tissue Donors , Animals , Bone Marrow Transplantation/methods , Cytokines/metabolism , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , Graft Survival , Graft vs Host Disease/genetics , Humans , Inflammation Mediators/metabolism , Inhibitor of Apoptosis Proteins/deficiency , Inhibitor of Apoptosis Proteins/genetics , Lymphocyte Activation , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/metabolism , Mice, Inbred C57BL , Mice, Knockout , Transplantation, Homologous
14.
J Immunol ; 199(7): 2356-2365, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28842469

ABSTRACT

Maintaining immune tolerance requires the production of Foxp3-expressing regulatory T (Treg) cells in the thymus. Activation of NF-κB transcription factors is critically required for Treg cell development, partly via initiating Foxp3 expression. NF-κB activation is controlled by a negative feedback regulation through the ubiquitin editing enzyme A20, which reduces proinflammatory signaling in myeloid cells and B cells. In naive CD4+ T cells, A20 prevents kinase RIPK3-dependent necroptosis. Using mice deficient for A20 in T lineage cells, we show that thymic and peripheral Treg cell compartments are quantitatively enlarged because of a cell-intrinsic developmental advantage of A20-deficient thymic Treg differentiation. A20-deficient thymic Treg cells exhibit reduced dependence on IL-2 but unchanged rates of proliferation and apoptosis. Activation of the NF-κB transcription factor RelA was enhanced, whereas nuclear translocation of c-Rel was decreased in A20-deficient thymic Treg cells. Furthermore, we found that the increase in Treg cells in T cell-specific A20-deficient mice was already observed in CD4+ single-positive CD25+ GITR+ Foxp3- thymic Treg cell progenitors. Treg cell precursors expressed high levels of the tumor necrosis factor receptor superfamily molecule GITR, whose stimulation is closely linked to thymic Treg cell development. A20-deficient Treg cells efficiently suppressed effector T cell-mediated graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, suggesting normal suppressive function. Holding thymic production of natural Treg cells in check, A20 thus integrates Treg cell activity and increased effector T cell survival into an efficient CD4+ T cell response.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/physiology , Thymus Gland/cytology , Thymus Gland/physiology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Animals , Apoptosis , Cell Differentiation , Flow Cytometry , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Glucocorticoid-Induced TNFR-Related Protein/genetics , Graft vs Host Disease/prevention & control , Interleukin-2/immunology , Lymphocyte Activation , Mice , NF-kappa B/metabolism , Proto-Oncogene Proteins c-rel/genetics , Signal Transduction , Stem Cell Transplantation , Thymus Gland/immunology , Transcription Factor RelA/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/deficiency
16.
Eur J Immunol ; 47(12): 2153-2162, 2017 12.
Article in English | MEDLINE | ID: mdl-28833039

ABSTRACT

The transfer of regulatory T cells, either freshly isolated, or modified, represents a promising therapeutic approach to dampen misdirected immune responses, like autoimmune diseases, chronic inflammatory syndromes and graft versus host disease. Clinical isolation of highly pure regulatory T cell (Treg) populations is still challenging and labeling reagents can influence their viability and functionality, potentially altering the potency of isolated Treg cell products. Here we show that reversible Fab multimer-based Treg purification can prevent conventional antibody label-induced interferences in vitro and in vivo. Remaining isolation reagents negatively interfere with Treg engraftment efficacy in C57BL/6 wild-type mice due to Fcγ-receptor- as well as IL-2 receptor-mediated mechanisms. Using a preclinical model for acute GvHD, we further show that purified 'label-freed' Tregs are protective at substantially lower cell numbers as compared to conventional nonreversible antibody staining, translating into significantly improved survival of mice treated with minimally manipulated Tregs. These findings have important clinical relevance for future Treg-based cell therapies.


Subject(s)
Adoptive Transfer/methods , Cell- and Tissue-Based Therapy/methods , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Animals , Cell Separation/methods , Cells, Cultured , Female , Flow Cytometry , Graft vs Host Disease/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Organ Specificity/immunology , Reproducibility of Results , Time Factors
17.
Eur J Immunol ; 47(11): 1982-1988, 2017 11.
Article in English | MEDLINE | ID: mdl-28833031

ABSTRACT

The NF-κB regulator A20 limits inflammation by providing negative feedback in myeloid cells and B cells. Functional lack of A20 has been linked to several inflammatory and autoimmune diseases. To define how A20 affects the functionality of T effector cells in a highly inflammatory environment, we performed conventional allogeneic hematopoietic stem cell transplantation (allo-HSCT) with A20-deficient CD4+ and CD8+ donor T cells in mice. Severity and mortality of graft-versus-host disease (GVHD) after allo-HSCT was drastically reduced in recipients transplanted with conventional doses of A20-deficient T cells. Consistently, we found that the A20-deficient donor T-cell compartment was strongly diminished at various timepoints after allo-HSCT. However, proportionally more A20-deficient donor T cells produced IFN-γ and systemic inflammation was elevated early after allo-HSCT. Consequently, increasing the dose of transplanted A20-deficient T cells reversed the original phenotype and resulted in enhanced GVHD mortality compared to recipients that received A20+/+ T cells. Still, A20-deficient T cells, activated either through T cell receptor-dependent or -independent mechanisms, were less viable than control A20+/+ T cells, highlighting that A20 balances both, T-cell activation and survival. Thus, our findings suggest that targeting A20 in T cells may allow to modulate T-cell-mediated inflammatory diseases like GVHD.


Subject(s)
Graft vs Host Disease/immunology , T-Lymphocytes/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Animals , Hematopoietic Stem Cell Transplantation/adverse effects , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Transplantation, Homologous
18.
Eur J Immunol ; 47(5): 872-879, 2017 05.
Article in English | MEDLINE | ID: mdl-28295265

ABSTRACT

Activation of the C-type lectin receptor Dectin-1 by ß-glucans triggers multiple signals within DCs that result in activation of innate immunity. While these mechanisms can potently prime CD8+ cytotoxic T-cell (CTL) responses without additional adjuvants, the Dectin-1 effector pathways that control CTL induction remain unclear. Here we demonstrate that Dectin-1-induced CTL cross-priming in mice does not require inflammasome activation but strictly depends on the adapter protein Card9 in vitro. In vivo, Dectin-1-mediated Card9 activation after vaccination drives both expansion and activation of Ag-specific CTLs, resulting in long-lasting CTL responses that are sufficient to protect mice from tumor challenge. This Dectin-1-induced antitumor immune response was independent of NK cell function and completely abrogated in Card9-deficient mice. Thus, our results demonstrate that Dectin-1-triggered Card9 signaling but not inflammasome activation can potently cross-prime Ag-specific CTLs, suggesting that this pathway would be a candidate for immunotherapy and vaccine development.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Lectins, C-Type/metabolism , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , CARD Signaling Adaptor Proteins/deficiency , CARD Signaling Adaptor Proteins/genetics , Cross-Priming , Immunity, Innate , Inflammasomes/immunology , Mice , Mice, Inbred C57BL , Neoplasms/physiopathology , Signal Transduction , Vaccination
19.
Immunity ; 31(1): 25-34, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19576794

ABSTRACT

Antiviral immunity is triggered by immunorecognition of viral nucleic acids. The cytosolic helicase RIG-I is a key sensor of viral infections and is activated by RNA containing a triphosphate at the 5' end. The exact structure of RNA activating RIG-I remains controversial. Here, we established a chemical approach for 5' triphosphate oligoribonucleotide synthesis and found that synthetic single-stranded 5' triphosphate oligoribonucleotides were unable to bind and activate RIG-I. Conversely, the addition of the synthetic complementary strand resulted in optimal binding and activation of RIG-I. Short double-strand conformation with base pairing of the nucleoside carrying the 5' triphosphate was required. RIG-I activation was impaired by a 3' overhang at the 5' triphosphate end. These results define the structure of RNA for full RIG-I activation and explain how RIG-I detects negative-strand RNA viruses that lack long double-stranded RNA but do contain blunt short double-stranded 5' triphosphate RNA in the panhandle region of their single-stranded genome.


Subject(s)
DEAD-box RNA Helicases/immunology , Polyphosphates/immunology , RNA Viruses/immunology , RNA, Double-Stranded/immunology , RNA, Viral/immunology , Animals , Cells, Cultured , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , Humans , Interferon-alpha/biosynthesis , Interferon-alpha/immunology , Mice , Mice, Mutant Strains , Monocytes/immunology , Monocytes/metabolism , Oligoribonucleotides/chemical synthesis , Oligoribonucleotides/immunology , Polyphosphates/metabolism , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Receptors, Immunologic
SELECTION OF CITATIONS
SEARCH DETAIL