Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Alcohol Clin Exp Res ; 42(8): 1476-1485, 2018 08.
Article in English | MEDLINE | ID: mdl-29786878

ABSTRACT

BACKGROUND: Complex interactions between environmental and genetic factors influence the risk of developing alcohol use disorder (AUD) in humans. To date, studies of the impact of environment on AUD risk have primarily focused on psychological characteristics or on the effects of developmental exposure to ethanol (EtOH). We recently observed that modifying levels of the long-chain ω-3 (LC ω-3) fatty acid, eicosapentaenoic acid (EPA), alters acute physiological responses to EtOH in Caenorhabditis elegans. Because mammals derive ω-3 fatty acids from their diet, here we asked if manipulating dietary levels of LC ω-3 fatty acids can affect EtOH-responsive behaviors in mice. METHODS: We used 2 well-characterized inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), which differ in their responses to EtOH. Age-matched young adult male mice were maintained on isocaloric diets that differed only by being enriched or depleted in LC ω-3 fatty acids. Animals were subsequently tested for acute EtOH sensitivity (locomotor activation and sedation), voluntary consumption, and metabolism. Fat deposition was also determined. RESULTS: We found that dietary levels of LC ω-3s altered EtOH sensitivity and consumption in a genotype-specific manner. Both B6 and D2 animals fed high LC ω-3 diets demonstrated lower EtOH-induced locomotor stimulation than those fed low LC ω-3 diets. EtOH sedation and EtOH metabolism were greater in D2, but not B6 mice on the high LC ω-3 diet. Conversely, LC ω-3 dietary manipulation altered EtOH consumption in B6, but not in D2 mice. B6 mice on a high LC ω-3 diet consumed more EtOH in a 2-bottle choice intermittent access model than B6 mice on a low LC ω-3 diet. CONCLUSIONS: Because EtOH sensitivity is predictive of risk of developing AUD in humans, our data indicate that dietary LC ω-3 levels should be evaluated for their impact on AUD risk in humans. Further, these studies indicate that genetic background can interact with fatty acids in the diet to significantly alter EtOH-responsive behaviors.


Subject(s)
Alcohol Drinking/physiopathology , Behavior, Animal/drug effects , Diet , Ethanol/pharmacology , Fatty Acids, Omega-3/administration & dosage , Alcoholism/physiopathology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Species Specificity
2.
Alcohol Clin Exp Res ; 41(5): 911-928, 2017 May.
Article in English | MEDLINE | ID: mdl-28226201

ABSTRACT

BACKGROUND: Alcohol dependence (AD) shows evidence for genetic liability, but genes influencing risk remain largely unidentified. METHODS: We conducted a genomewide association study in 706 related AD cases and 1,748 unscreened population controls from Ireland. We sought replication in 15,496 samples of European descent. We used model organisms (MOs) to assess the role of orthologous genes in ethanol (EtOH)-response behaviors. We tested 1 primate-specific gene for expression differences in case/control postmortem brain tissue. RESULTS: We detected significant association in COL6A3 and suggestive association in 2 previously implicated loci, KLF12 and RYR3. None of these signals are significant in replication. A suggestive signal in the long noncoding RNA LOC339975 is significant in case:control meta-analysis, but not in a population sample. Knockdown of a COL6A3 ortholog in Caenorhabditis elegans reduced EtOH sensitivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss of function of the KLF12 ortholog in C. elegans impaired development of acute functional tolerance (AFT). Klf12 expression correlated with locomotor activation following EtOH injection in mice. Loss of function of the RYR3 ortholog reduced EtOH sensitivity in C. elegans and rapid tolerance in Drosophila. The ryanodine receptor antagonist dantrolene reduced motivation to self-administer EtOH in rats. Expression of LOC339975 does not differ between cases and controls but is reduced in carriers of the associated rs11726136 allele in nucleus accumbens (NAc). CONCLUSIONS: We detect association between AD and COL6A3, KLF12, RYR3, and LOC339975. Despite nonreplication of COL6A3, KLF12, and RYR3 signals, orthologs of these genes influence behavioral response to EtOH in MOs, suggesting potential involvement in human EtOH response and AD liability. The associated LOC339975 allele may influence gene expression in human NAc. Although the functions of long noncoding RNAs are poorly understood, there is mounting evidence implicating these genes in multiple brain functions and disorders.


Subject(s)
Alcoholism/genetics , Ethanol/administration & dosage , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Models, Animal , Adult , Alcoholism/diagnosis , Alcoholism/epidemiology , Animals , Caenorhabditis elegans , Case-Control Studies , Drosophila , Female , Genetic Loci/drug effects , Genetic Predisposition to Disease/epidemiology , Humans , Ireland/epidemiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Middle Aged , Rats
3.
Neuropharmacology ; 109: 281-292, 2016 10.
Article in English | MEDLINE | ID: mdl-27343385

ABSTRACT

There are no FDA-approved pharmacotherapies for cocaine use disorder, indicating a need to identify novel reagents with therapeutic potential. Ibudilast is an anti-inflammatory glial attenuator and non-selective phosphodiesterase inhibitor currently undergoing clinical evaluations for methamphetamine, opiate, and alcohol abuse disorders. We previously showed that twice daily (b.i.d.) ibudilast reduces the development of methamphetamine sensitization in male mice. However, nothing is known about the ability of ibudilast to modulate the expression of sensitization that occurs after drug re-exposure during abstinence, effects on cocaine-mediated behaviors, or potentially sexually dimorphic effects. Male and female rats were administered cocaine for 7 days and expression of sensitization was assessed by cocaine challenge after 21 days abstinence. On test days, 15 mg/kg i. p. cocaine was evaluated, whereas 30 mg/kg was administered on intervening days. Lower test doses avoid competition of non-motor behaviors with locomotion. In all measures where sensitization was expressed, ibudilast (7.5 and 10 mg/kg, i. p., b. i.d. for 3 days and once on test day) reversed this behavior to levels seen after acute exposure, but not below. There were some intriguing sexually dimorphic effects that were not a function of estrous cycle. Specifically, distance travelled in the center of the test arena and rearing only sensitized in male rats, and ibudilast reversed these behaviors to levels seen after acute cocaine exposure. In females, center distance travelled was reduced below acute cocaine levels by 7.5 mg/kg ibudilast. Increased distance travelled in the center versus periphery is thought to model anxiolytic-like behavior due to increased predation risk. Taken together, these data suggest that the clinical evaluation of ibudilast could be extended to cocaine use disorder.


Subject(s)
Behavior, Addictive/drug therapy , Cocaine/administration & dosage , Exploratory Behavior/drug effects , Pyridines/therapeutic use , Sex Characteristics , Animals , Behavior, Addictive/psychology , Dose-Response Relationship, Drug , Estrous Cycle/drug effects , Exploratory Behavior/physiology , Female , Locomotion/drug effects , Locomotion/physiology , Male , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Pyridines/pharmacology , Rats , Rats, Long-Evans
4.
J Vis Exp ; (103)2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26437131

ABSTRACT

Brain microinjection can aid elucidation of the molecular substrates of complex behaviors, such as motivation. For this purpose rodents can serve as appropriate models, partly because the response to behaviorally relevant stimuli and the circuitry parsing stimulus-action outcomes is astonishingly similar between humans and rodents. In studying molecular substrates of complex behaviors, the microinjection of reagents that modify, augment, or silence specific systems is an invaluable technique. However, it is crucial that the microinjection site is precisely targeted in order to aid interpretation of the results. We present a method for the manufacture of surgical implements and microinjection needles that enables accurate microinjection and unlimited customizability with minimal cost. Importantly, this technique can be successfully completed in awake rodents if conducted in conjunction with other JoVE articles that covered requisite surgical procedures. Additionally, there are many behavioral paradigms that are well suited for measuring motivation. The progressive ratio is a commonly used method that quantifies the efficacy of a reinforcer to maintain responding despite an (often exponentially) increasing work requirement. This assay is sensitive to reinforcer magnitude and pharmacological manipulations, which allows reinforcing efficacy and/ or motivation to be determined. We also present a straightforward approach to program operant software to accommodate a progressive ratio reinforcement schedule.


Subject(s)
Behavior, Animal/drug effects , Behavior, Animal/physiology , Brain/drug effects , Brain/physiology , Microinjections/methods , Motivation/physiology , Reinforcement Schedule , Stereotaxic Techniques , Animals , Conditioning, Operant , Humans , Wakefulness
5.
Neuropsychopharmacology ; 39(12): 2835-45, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24903651

ABSTRACT

Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with astrocyte-specific DREADDs. Taken together, our findings demonstrate that NAcore astrocytes can shape the motivation to self-administer ethanol; suggesting that the development of ligands which selectively stimulate astrocytes may be a successful strategy to abate ethanol-seeking behavior.


Subject(s)
Alcohol Drinking/physiopathology , Astrocytes/drug effects , Drug-Seeking Behavior/physiology , Motivation , Nucleus Accumbens/drug effects , Reward , Alcohol Drinking/pathology , Animals , Astrocytes/pathology , Astrocytes/physiology , Calcium/metabolism , Central Nervous System Depressants/administration & dosage , Cytosol/drug effects , Cytosol/metabolism , Drug-Seeking Behavior/drug effects , Ethanol/administration & dosage , Gap Junctions/drug effects , Gap Junctions/physiology , Glial Fibrillary Acidic Protein/metabolism , Male , Nucleus Accumbens/pathology , Nucleus Accumbens/physiopathology , Rats, Sprague-Dawley , Rats, Wistar , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL