Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Publication year range
1.
Am J Respir Crit Care Med ; 209(2): 153-163, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37931077

ABSTRACT

Rationale: Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. Objectives: To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. Methods: p73floxE7-E9 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium. The resulting p73Δairway mice were analyzed using electron microscopy, flow cytometry, morphometry, forced oscillation technique, and single-cell RNA sequencing. Furthermore, the effects of cigarette smoke on p73 transcript and protein expression were examined using in vitro and in vivo models and in studies including airway epithelium from smokers and patients with COPD. Measurements and Main Results: Loss of functional p73 in the respiratory epithelium resulted in a near-complete absence of MCCs in p73Δairway mice. In adulthood, these mice spontaneously developed neutrophilic inflammation and emphysema-like lung remodeling and had progressive loss of secretory cells. Exposure of normal airway epithelium cells to cigarette smoke rapidly and durably suppressed p73 expression in vitro and in vivo. Furthermore, tumor protein 73 mRNA expression was reduced in the airways of current smokers (n = 82) compared with former smokers (n = 69), and p73-expressing MCCs were reduced in the small airways of patients with COPD (n = 11) compared with control subjects without COPD (n = 12). Conclusions: Loss of functional p73 in murine airway epithelium results in the absence of MCCs and promotes COPD-like lung pathology. In smokers and patients with COPD, loss of p73 may contribute to MCC loss or dysfunction.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Humans , Mice , Epithelium/metabolism , Lung , Pulmonary Disease, Chronic Obstructive/pathology
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L539-L550, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38410870

ABSTRACT

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than nondeployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the subjects in this cohort reported exposure to sulfur dioxide (SO2), we developed a model of repetitive exposure to SO2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular (PV) disease. Although abnormalities in small airways were not sufficient to alter lung mechanics, PV remodeling resulted in the development of pulmonary hypertension and reduced exercise tolerance in SO2-exposed mice. SO2 exposure led to increased formation of isolevuglandins (isoLGs) adducts and superoxide dismutase 2 (SOD2) acetylation in endothelial cells, which were attenuated by treatment with the isoLG scavenger 2-hydroxybenzylamine acetate (2-HOBA). In addition, 2-HOBA treatment or Siruin-3 overexpression in a transgenic mouse model prevented vascular remodeling following SO2 exposure. In summary, our results indicate that repetitive SO2 exposure recapitulates many aspects of PDRS and that oxidative stress appears to mediate PV remodeling in this model. Together, these findings provide new insights regarding the critical mechanisms underlying PDRS.NEW & NOTEWORTHY We developed a mice model of "post-deployment respiratory syndrome" (PDRS), a condition in Veterans with unexplained exertional dyspnea. Our model successfully recapitulates many of the pathological and physiological features of the syndrome, revealing involvement of the ROS-isoLGs-Sirt3-SOD2 pathway in pulmonary vasculature pathology. Our study provides additional knowledge about effects and long-term consequences of sulfur dioxide exposure on the respiratory system, serving as a valuable tool for future PDRS research.


Subject(s)
Disease Models, Animal , Sulfur Dioxide , Animals , Mice , Mice, Inbred C57BL , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Lung/pathology , Lung/drug effects , Lung/metabolism , Male , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Mice, Transgenic , Vascular Remodeling/drug effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Endothelial Cells/pathology , Endothelial Cells/metabolism , Endothelial Cells/drug effects
3.
Am J Respir Crit Care Med ; 207(11): 1486-1497, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36952660

ABSTRACT

Rationale: Type 2 inflammation has been described in people with cystic fibrosis (CF). Whether loss of CFTR (cystic fibrosis transmembrane conductance regulator) function contributes directly to a type 2 inflammatory response has not been fully defined. Objectives: The potent alarmin IL-33 has emerged as a critical regulator of type 2 inflammation. We tested the hypothesis that CFTR deficiency increases IL-33 expression and/or release and deletion of IL-33 reduces allergen-induced inflammation in the CF lung. Methods: Human airway epithelial cells (AECs) grown from non-CF and CF cell lines and Cftr+/+ and Cftr-/- mice were used in this study. Pulmonary inflammation in Cftr+/+ and Cftr-/- mice with and without IL-33 or ST2 (IL-1 receptor-like 1) germline deletion was determined by histological analysis, BAL, and cytokine analysis. Measurements and Main Results: After allergen challenge, both CF human AECs and Cftr-/- mice had increased IL-33 expression compared with control AECs and Cftr+/+ mice, respectively. DUOX1 (dual oxidase 1) expression was increased in CF human AECs and Cftr-/- mouse lungs compared with control AECs and lungs from Cftr+/+ mice and was necessary for the increased IL-33 release in Cftr-/- mice compared with Cftr+/+ mice. IL-33 stimulation of Cftr-/- CD4+ T cells resulted in increased type 2 cytokine production compared with Cftr+/+ CD4+ T cells. Deletion of IL-33 or ST2 decreased both type 2 inflammation and neutrophil recruitment in Cftr-/- mice compared with Cftr+/+ mice. Conclusions: Absence of CFTR reprograms airway epithelial IL-33 release and licenses IL-33-dependent inflammation. Modulation of the IL-33/ST2 axis represents a novel therapeutic target in CF type 2-high and neutrophilic inflammation.


Subject(s)
Cystic Fibrosis , Mice , Animals , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Interleukin-33/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Inflammation/metabolism , Cytokines/metabolism , Allergens , Epithelial Cells/metabolism
4.
Am J Respir Crit Care Med ; 206(3): 260-270, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35550018

ABSTRACT

Rationale: Constrictive bronchiolitis (ConB) is a relatively rare and understudied form of lung disease whose underlying immunopathology remains incompletely defined. Objectives: Our objectives were to quantify specific pathological features that differentiate ConB from other diseases that affect the small airways and to investigate the underlying immune and inflammatory phenotype present in ConB. Methods: We performed a comparative histomorphometric analysis of small airways in lung biopsy samples collected from 50 soldiers with postdeployment ConB, 8 patients with sporadic ConB, 55 patients with chronic obstructive pulmonary disease, and 25 nondiseased control subjects. We measured immune and inflammatory gene expression in lung tissue using the NanoString nCounter Immunology Panel from six control subjects, six soldiers with ConB, and six patients with sporadic ConB. Measurements and Main Results: Compared with control subjects, we found shared pathological changes in small airways from soldiers with postdeployment ConB and patients with sporadic ConB, including increased thickness of the smooth muscle layer, increased collagen deposition in the subepithelium, and lymphocyte infiltration. Using principal-component analysis, we showed that ConB pathology was clearly separable both from control lungs and from small airway disease associated with chronic obstructive pulmonary disease. NanoString gene expression analysis from lung tissue revealed T-cell activation in both groups of patients with ConB with upregulation of proinflammatory pathways, including cytokine-cytokine receptor interactions, NF-κB (nuclear factor-κB) signaling, TLR (Toll-like receptor) signaling, T-cell receptor signaling, and antigen processing and presentation. Conclusions: These findings indicate shared immunopathology among different forms of ConB and suggest that an ongoing T-helper cell type 1-type adaptive immune response underlies airway wall remodeling in ConB.


Subject(s)
Asthma , Bronchiolitis Obliterans , Pulmonary Disease, Chronic Obstructive , Airway Remodeling/physiology , Humans , Lung , NF-kappa B/metabolism
5.
Am J Respir Crit Care Med ; 206(5): 596-607, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35728047

ABSTRACT

Rationale: Although persistent fibroblast activation is a hallmark of idiopathic pulmonary fibrosis (IPF), mechanisms regulating persistent fibroblast activation in the lungs have not been fully elucidated. Objectives: On the basis of our observation that lung fibroblasts express TBXA2R (thromboxane-prostanoid receptor) during fibrosis, we investigated the role of TBXA2R signaling in fibrotic remodeling. Methods: We identified TBXA2R expression in lungs of patients with IPF and mice and studied primary mouse and human lung fibroblasts to determine the impact of TBXA2R signaling on fibroblast activation. We used TBXA2R-deficient mice and small-molecule inhibitors to investigate TBXA2R signaling in preclinical lung fibrosis models. Measurements and Main Results: TBXA2R expression was upregulated in fibroblasts in the lungs of patients with IPF and in mouse lungs during experimental lung fibrosis. Genetic deletion of TBXA2R, but not inhibition of thromboxane synthase, protected mice from bleomycin-induced lung fibrosis, thereby suggesting that an alternative ligand activates profibrotic TBXA2R signaling. In contrast to thromboxane, F2-isoprostanes, which are nonenzymatic products of arachidonic acid induced by reactive oxygen species, were persistently elevated during fibrosis. F2-isoprostanes induced TBXA2R signaling in fibroblasts and mediated a myofibroblast activation profile due, at least in part, to potentiation of TGF-ß (transforming growth factor-ß) signaling. In vivo treatment with the TBXA2R antagonist ifetroban reduced profibrotic signaling in the lungs, protected mice from lung fibrosis in three preclinical models (bleomycin, Hermansky-Pudlak mice, and radiation-induced fibrosis), and markedly enhanced fibrotic resolution after bleomycin treatment. Conclusions: TBXA2R links oxidative stress to fibroblast activation during lung fibrosis. TBXA2R antagonists could have utility in treating pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Receptors, Thromboxane , Animals , Bleomycin/pharmacology , F2-Isoprostanes/metabolism , Fibroblasts/metabolism , Humans , Idiopathic Pulmonary Fibrosis/genetics , Lung/metabolism , Mice , Mice, Inbred C57BL , Prostaglandins/metabolism , Receptors, Thromboxane/metabolism , Thromboxanes/metabolism , Transforming Growth Factor beta/metabolism
6.
Thorax ; 76(11): 1079-1088, 2021 11.
Article in English | MEDLINE | ID: mdl-33827979

ABSTRACT

BACKGROUND: Although a variety of pathological changes have been described in small airways of patients with COPD, the critical anatomic features determining airflow limitation remain incompletely characterised. METHODS: We examined lung tissue specimens from 18 non-smokers without chronic lung disease and 55 former smokers with COPD for pathological features of small airways that could contribute to airflow limitation. Morphometric evaluation was performed for epithelial and subepithelial tissue thickness, collagen and elastin content, luminal mucus and radial alveolar attachments. Immune/inflammatory cells were enumerated in airway walls. Quantitative emphysema scoring was performed on chest CT scans. RESULTS: Small airways from patients with COPD showed thickening of epithelial and subepithelial tissue, mucus plugging and reduced collagen density in the airway wall (in severe COPD). In patients with COPD, we also observed a striking loss of alveolar attachments, which are connective tissue septa that insert radially into the small airway adventitia. While each of these parameters correlated with reduced airflow (FEV1), multivariable regression analysis indicated that loss of alveolar attachments was the major determinant of airflow limitation related to small airways. Neutrophilic infiltration of airway walls and collagen degradation in airway adventitia correlated with loss of alveolar attachments. In addition, quantitative analysis of CT scans identified an association between the extent of emphysema and loss of alveolar attachments. CONCLUSION: In COPD, loss of radial alveolar attachments in small airways is the pathological feature most closely related to airflow limitation. Destruction of alveolar attachments may be mediated by neutrophilic inflammation.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Emphysema/diagnostic imaging , Respiratory Function Tests , Respiratory Physiological Phenomena
7.
Allergy ; 76(1): 255-268, 2021 01.
Article in English | MEDLINE | ID: mdl-32648964

ABSTRACT

BACKGROUND: Group 2 innate lymphoid cells (ILC2) are stimulated by IL-33 to increase IL-5 and IL-13 production and airway inflammation. While sex hormones regulate airway inflammation, it remained unclear whether estrogen signaling through estrogen receptor-α (ER-α, Esr1) or ER-ß (Esr2) increased ILC2-mediated airway inflammation. We hypothesize that estrogen signaling increases allergen-induced IL-33 release, ILC2 cytokine production, and airway inflammation. METHODS: Female Esr1-/- , Esr2-/- , wild-type (WT), and IL33fl/fl eGFP mice were challenged with Alternaria extract (Alt Ext) or vehicle for 4 days. In select experiments, mice were administered tamoxifen or vehicle pellets for 21 days prior to challenge. Lung ILC2, IL-5 and IL-13 production, and BAL inflammatory cells were measured on day 5 of Alt Ext challenge model. Bone marrow from WT and Esr1-/- female mice was transferred (1:1 ratio) into WT female recipients for 6 weeks followed by Alt Ext challenge. hBE33 cells and normal human bronchial epithelial cells (NHBE) were pretreated with 17ß-estradiol (E2), propyl-pyrazole-triol (PPT, ER-α agonist), or diarylpropionitrile (DPN, ER-ß agonist) before allergen challenge to determine IL-33 gene expression and release, extracellular ATP release, DUOX-1 production, and necrosis. RESULTS: Alt Ext challenged Esr1-/- , but not Esr2-/- , mice had decreased IL-5 and IL-13 production, BAL eosinophils, and IL-33 release compared to WT mice. Tamoxifen decreased IL-5 and IL-13 production and BAL eosinophils. IL-33eGFP + epithelial cells were decreased in Alt Ext challenged Esr1-/- mice compared to WT mice. 17ß-E2 or PPT, but not DPN, increased IL-33 gene expression, release, and DUOX-1 production in hBE33 or NHBE cells. CONCLUSION: Estrogen receptor -α signaling increased IL-33 release and ILC2-mediated airway inflammation.


Subject(s)
Allergens , Estrogen Receptor alpha , Interleukin-33 , Animals , Female , Immunity, Innate , Inflammation , Lymphocytes , Mice
8.
J Immunol ; 201(7): 1843-1854, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30127088

ABSTRACT

As adults, women are twice as likely as men to have asthma; however, the mechanisms explaining this sexual dimorphism remain unclear. Increased type 2 cytokines and/or IL-17A, leading to increased airway eosinophils and neutrophils, respectively, are associated with asthma. Previous studies showed that testosterone, signaling through the androgen receptor (AR), decreased Th2-mediated allergic inflammation and type 2 innate immune responses during allergic inflammation. Therefore, we hypothesized that testosterone and AR signaling attenuate type 2 and IL-17A-mediated airway inflammation. To test our hypothesis, sham-operated and gonadectomized female and male mice were intranasally challenged with house dust mite (HDM) or vehicle (PBS) for 3 wk. Testosterone decreased and ovarian hormones increased HDM-induced eosinophilic and neutrophilic inflammation, IgE production, and airway hyperresponsiveness, as well as decreased the numbers of IL-13+ CD4 Th2 cells and IL-17A+ CD4 Th17 cells in the lung. Next, using wild-type male and female mice and ARtfm male mice that are unable to signal through the AR, we determined AR signaling intrinsically attenuated IL-17A+ Th17 cells but indirectly decreased IL-13+ CD4 Th2 cells in the lung by suppressing HDM-induced IL-4 production. In vitro Th2 and Th17 differentiation experiments showed AR signaling had no direct effect on Th2 cell differentiation but decreased IL-17A protein expression and IL-23R mRNA relative expression from Th17 cells. Combined, these findings show AR signaling attenuated type 2 and IL-17A inflammation through different mechanisms and provide a potential explanation for the increased prevalence of asthma in women compared with men.


Subject(s)
Asthma/metabolism , Eosinophils/immunology , Respiratory Hypersensitivity/metabolism , Sex Factors , Testosterone/metabolism , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Antigens, Dermatophagoides/immunology , Castration , Disease Models, Animal , Female , Humans , Immunoglobulin E/metabolism , Inflammation/metabolism , Interleukin-17/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation/genetics , Neutrophil Infiltration , Prevalence , Pyroglyphidae/immunology , Receptors, Androgen/genetics
9.
Am J Respir Crit Care Med ; 198(9): 1140-1150, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29676596

ABSTRACT

RATIONALE: Lung natural killer cells (NKs) kill a greater percentage of autologous lung parenchymal cells in chronic obstructive pulmonary disease (COPD) than in nonobstructed smokers. To become cytotoxic, NKs require priming, typically by dendritic cells (DCs), but whether priming occurs in the lungs in COPD is unknown. METHODS: We used lung tissue and in some cases peripheral blood from patients undergoing clinically indicated resections to determine in vitro killing of CD326+ lung epithelial cells by isolated lung CD56+ NKs. We also measured the cytotoxicity of unprimed blood NKs after preincubation with lung DCs. To investigate mechanisms of DC-mediated priming, we used murine models of COPD induced by cigarette smoke (CS) exposure or by polymeric immunoglobulin receptor (pIgR) deficiency, and blocked IL-15Rα (IL-15 receptor α subunit) trans-presentation by genetic and antibody approaches. RESULTS: Human lung NKs killed isolated autologous lung epithelial cells; cytotoxicity was increased (P = 0.0001) in COPD, relative to smokers without obstruction. Similarly, increased lung NK cytotoxicity compared with control subjects was observed in CS-exposed mice and pIgR-/- mice. Blood NKs both from smokers without obstruction and subjects with COPD showed minimal epithelial cell killing, but in COPD, preincubation with lung DCs increased cytotoxicity. NKs were primed by CS-exposed murine DCs in vitro and in vivo. Inhibiting IL-15Rα trans-presentation eliminated NK priming both by murine CS-exposed DCs and by lung DCs from subjects with COPD. CONCLUSIONS: Heightened NK cytotoxicity against lung epithelial cells in COPD results primarily from lung DC-mediated priming via IL-15 trans-presentation on IL-15Rα. Future studies are required to test whether increased NK cytotoxicity contributes to COPD pathogenesis.


Subject(s)
Dendritic Cells/immunology , Interleukin-15 Receptor alpha Subunit/genetics , Interleukin-15 Receptor alpha Subunit/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Aged , Animals , Cigarette Smoking/immunology , Cytotoxins , Disease Models, Animal , Epithelial Cells/immunology , Female , Flow Cytometry , Humans , In Vitro Techniques , Lymphocyte Activation/genetics , Male , Mice , Mice, Inbred C57BL , Prospective Studies , Pulmonary Disease, Chronic Obstructive/genetics
10.
Am J Respir Cell Mol Biol ; 58(6): 736-744, 2018 06.
Article in English | MEDLINE | ID: mdl-29314863

ABSTRACT

Loss of secretory IgA is common in the small airways of patients with chronic obstructive pulmonary disease and may contribute to disease pathogenesis. Using mice that lack secretory IgA in the airways due to genetic deficiency of polymeric Ig receptor (pIgR-/- mice), we investigated the role of neutrophils in driving the fibrotic small airway wall remodeling and emphysema that develops spontaneously in these mice. By flow cytometry, we found an increase in the percentage of neutrophils among CD45+ cells in the lungs, as well as an increase in total neutrophils, in pIgR-/- mice compared with wild-type controls. This increase in neutrophils in pIgR-/- mice was associated with elastin degradation in the alveolar compartment and around small airways, along with increased collagen deposition in small airway walls. Neutrophil depletion using anti-Ly6G antibodies or treatment with broad-spectrum antibiotics inhibited development of both emphysema and small airway remodeling, suggesting that airway bacteria provide the stimulus for deleterious neutrophilic inflammation in this model. Exogenous bacterial challenge using lysates prepared from pathogenic and nonpathogenic bacteria worsened neutrophilic inflammation and lung remodeling in pIgR-/- mice. This phenotype was abrogated by antiinflammatory therapy with roflumilast. Together, these studies support the concept that disruption of the mucosal immune barrier in small airways contributes to chronic obstructive pulmonary disease progression by allowing bacteria to stimulate chronic neutrophilic inflammation, which, in turn, drives progressive airway wall fibrosis and emphysematous changes in the lung parenchyma.


Subject(s)
Airway Remodeling/physiology , Neutrophils/pathology , Pneumonia, Bacterial/pathology , Pulmonary Disease, Chronic Obstructive/etiology , Airway Remodeling/drug effects , Aminopyridines/pharmacology , Animals , Bacillus/pathogenicity , Benzamides/pharmacology , Cyclopropanes/pharmacology , Disease Models, Animal , Mice, Inbred C57BL , Mice, Mutant Strains , Neutrophils/microbiology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Emphysema/pathology , Receptors, Cell Surface/genetics
11.
J Immunol ; 196(4): 1891-9, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26773153

ABSTRACT

Although numerous studies have demonstrated a critical role for canonical NF-κB signaling in inflammation and disease, the function of the noncanonical NF-κB pathway remains ill-defined. In lung tissue from patients with acute respiratory distress syndrome, we identified increased expression of the noncanonical pathway component p100/p52. To investigate the effects of p52 expression in vivo, we generated a novel transgenic mouse model with inducible expression of p52 in Clara cell secretory protein-expressing airway epithelial cells. Although p52 overexpression alone did not cause significant inflammation, p52 overexpression caused increased lung inflammation, injury, and mortality following intratracheal delivery of Escherichia coli LPS. No differences in cytokine/chemokine expression were measured between p52-overexpressing mice and controls, but increased apoptosis of Clara cell secretory protein-positive airway epithelial cells was observed in transgenic mice after LPS stimulation. In vitro studies in lung epithelial cells showed that p52 overexpression reduced cell survival and increased the expression of several proapoptotic genes during cellular stress. Collectively, these studies demonstrate a novel role for p52 in cell survival/apoptosis of airway epithelial cells and implicate noncanonical NF-κB signaling in the pathogenesis of acute respiratory distress syndrome.


Subject(s)
Apoptosis/immunology , NF-kappa B p52 Subunit/immunology , Respiratory Distress Syndrome/pathology , Respiratory Mucosa/pathology , Animals , Blotting, Western , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Lipopolysaccharides/toxicity , Mice , Mice, Transgenic , NF-kappa B p52 Subunit/biosynthesis , Pneumonia/immunology , Pneumonia/pathology , Real-Time Polymerase Chain Reaction , Respiratory Distress Syndrome/immunology , Respiratory Mucosa/immunology , Signal Transduction/immunology , Up-Regulation
12.
Am J Respir Crit Care Med ; 195(8): 1010-1021, 2017 04 15.
Article in English | MEDLINE | ID: mdl-27911098

ABSTRACT

RATIONALE: Maintenance of a surface immune barrier is important for homeostasis in organs with mucosal surfaces that interface with the external environment; however, the role of the mucosal immune system in chronic lung diseases is incompletely understood. OBJECTIVES: We examined the relationship between secretory IgA (SIgA) on the mucosal surface of small airways and parameters of inflammation and airway wall remodeling in chronic obstructive pulmonary disease (COPD). METHODS: We studied 1,104 small airways (<2 mm in diameter) from 50 former smokers with COPD and 39 control subjects. Small airways were identified on serial tissue sections and examined for epithelial morphology, SIgA, bacterial DNA, nuclear factor-κB activation, neutrophil and macrophage infiltration, and airway wall thickness. MEASUREMENTS AND MAIN RESULTS: Morphometric evaluation of small airways revealed increased mean airway wall thickness and inflammatory cell counts in lungs from patients with COPD compared with control subjects, whereas SIgA level on the mucosal surface was decreased. However, when small airways were classified as SIgA intact or SIgA deficient, we found that pathologic changes were localized almost exclusively to SIgA-deficient airways, regardless of study group. SIgA-deficient airways were characterized by (1) abnormal epithelial morphology, (2) invasion of bacteria across the apical epithelial barrier, (3) nuclear factor-κB activation, (4) accumulation of macrophages and neutrophils, and (5) fibrotic remodeling of the airway wall. CONCLUSIONS: Our findings support the concept that localized, acquired SIgA deficiency in individual small airways of patients with COPD allows colonizing bacteria to cross the epithelial barrier and drive persistent inflammation and airway wall remodeling, even after smoking cessation.


Subject(s)
Airway Remodeling/physiology , IgA Deficiency/complications , IgA Deficiency/physiopathology , Inflammation/complications , Inflammation/physiopathology , Lung/physiopathology , Aged , Chronic Disease , Female , Humans , Male , Middle Aged
13.
Development ; 141(24): 4751-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25395457

ABSTRACT

Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for ß1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of ß1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete ß1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. ß1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for ß1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial ß1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.


Subject(s)
Epithelial Cells/metabolism , Integrin beta1/metabolism , Lung/embryology , Organogenesis/physiology , Pulmonary Alveoli/embryology , Animals , Bronchoalveolar Lavage , Cell Adhesion/physiology , Cell Movement/physiology , Chemokine CCL2/metabolism , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix/metabolism , Integrases/metabolism , Mice , Microscopy, Confocal , Pulmonary Surfactant-Associated Protein C/metabolism , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances
14.
Am J Pathol ; 186(7): 1786-1800, 2016 07.
Article in English | MEDLINE | ID: mdl-27181406

ABSTRACT

The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase ß transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase ß transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.


Subject(s)
Elastin/metabolism , Epithelium/metabolism , Inflammation/complications , Lung/embryology , Animals , Blotting, Western , Fetal Development , Humans , Immunohistochemistry , Infant, Newborn , Infant, Premature , Inflammation/metabolism , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Models, Animal , NF-kappa B/metabolism , Real-Time Polymerase Chain Reaction
15.
Am J Respir Cell Mol Biol ; 55(1): 128-34, 2016 07.
Article in English | MEDLINE | ID: mdl-26807608

ABSTRACT

Sarcoidosis is a granulomatous disease of unknown cause. Prior molecular and immunologic studies have confirmed the presence of mycobacterial virulence factors, such as catalase peroxidase and superoxide dismutase A, within sarcoidosis granulomas. Molecular analysis of granulomas can identify targets of known antibiotics classes. Currently, major antibiotics are directed against DNA synthesis, protein synthesis, and cell wall formation. We conducted molecular analysis of 40 sarcoidosis diagnostic specimens and compared them with 33 disease control specimens for the presence of mycobacterial genes that encode antibiotic targets. We assessed for genes involved in DNA synthesis (DNA gyrase A [gyrA] and DNA gyrase B), protein synthesis (RNA polymerase subunit ß), cell wall synthesis (embCAB operon and enoyl reductase), and catalase peroxidase. Immunohistochemical analysis was conducted to investigate the locale of mycobacterial genes such as gyrA within 12 sarcoidosis specimens and 12 disease controls. Mycobacterial DNA was detected in 33 of 39 sarcoidosis specimens by quantitative real-time polymerase chain reaction compared with 2 of 30 disease control specimens (P < 0.001, two-tailed Fisher's test). Twenty of 39 were positive for three or more mycobacterial genes, compared with 1 of 30 control specimens (P < 0.001, two-tailed Fisher's test). Immunohistochemistry analysis localized mycobacterial gyrA nucleic acids to sites of granuloma formation in 9 of 12 sarcoidosis specimens compared with 1 of 12 disease controls (P < 0.01). Microbial genes encoding enzymes that can be targeted by currently available antimycobacterial antibiotics are present in sarcoidosis specimens and localize to sites of granulomatous inflammation. Use of antimicrobials directed against target enzymes may be an innovative treatment alternative.


Subject(s)
Anti-Infective Agents/therapeutic use , Granuloma/drug therapy , Molecular Targeted Therapy , Sarcoidosis/drug therapy , Adolescent , Adult , Aged , Case-Control Studies , DNA, Bacterial/analysis , Demography , Female , Granuloma/microbiology , Granuloma/pathology , Humans , In Situ Hybridization , Male , Middle Aged , Mycobacterium/drug effects , Real-Time Polymerase Chain Reaction , Sarcoidosis/microbiology , Sarcoidosis/pathology , Young Adult
16.
Am J Physiol Lung Cell Mol Physiol ; 310(3): L249-62, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26637636

ABSTRACT

Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.


Subject(s)
Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Hypoxia-Inducible Factor 1/metabolism , Pulmonary Artery/metabolism , Animals , Cell Proliferation/physiology , Cells, Cultured , Endothelium, Vascular/metabolism , Fibrosis/etiology , Hypertension, Pulmonary/complications , Hypoxia/metabolism , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Vascular Remodeling/physiology
17.
Thorax ; 71(7): 633-45, 2016 07.
Article in English | MEDLINE | ID: mdl-27071418

ABSTRACT

BACKGROUND: Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. METHODS: BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. RESULTS: We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). CONCLUSIONS: These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen.


Subject(s)
Asthma/immunology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Immunity, Innate , Lymphocytes/immunology , Allergens/immunology , Alternaria , Animals , Bronchoalveolar Lavage , Chemokine CCL11/metabolism , Chemokine CCL24/metabolism , Interleukin-13/metabolism , Interleukin-33/pharmacology , Interleukin-5/metabolism , Lung/immunology , Mice , Mice, Inbred BALB C
18.
Am J Respir Crit Care Med ; 191(4): 417-26, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25389906

ABSTRACT

RATIONALE: Asymptomatic relatives of patients with familial interstitial pneumonia (FIP), the inherited form of idiopathic interstitial pneumonia, carry increased risk for developing interstitial lung disease. OBJECTIVES: Studying these at-risk individuals provides a unique opportunity to investigate early stages of FIP pathogenesis and develop predictive models of disease onset. METHODS: Seventy-five asymptomatic first-degree relatives of FIP patients (mean age, 50.8 yr) underwent blood sampling and high-resolution chest computed tomography (HRCT) scanning in an ongoing cohort study; 72 consented to bronchoscopy with bronchoalveolar lavage (BAL) and transbronchial biopsies. Twenty-seven healthy individuals were used as control subjects. MEASUREMENTS AND MAIN RESULTS: Eleven of 75 at-risk subjects (14%) had evidence of interstitial changes by HRCT, whereas 35.2% had abnormalities on transbronchial biopsies. No differences were noted in inflammatory cells in BAL between at-risk individuals and control subjects. At-risk subjects had increased herpesvirus DNA in cell-free BAL and evidence of herpesvirus antigen expression in alveolar epithelial cells (AECs), which correlated with expression of endoplasmic reticulum stress markers in AECs. Peripheral blood mononuclear cell and AEC telomere length were shorter in at-risk individuals than healthy control subjects. The minor allele frequency of the Muc5B rs35705950 promoter polymorphism was increased in at-risk subjects. Levels of several plasma biomarkers differed between at-risk subjects and control subjects, and correlated with abnormal HRCT scans. CONCLUSIONS: Evidence of lung parenchymal remodeling and epithelial dysfunction was identified in asymptomatic individuals at risk for FIP. Together, these findings offer new insights into the early pathogenesis of idiopathic interstitial pneumonia and provide an ongoing opportunity to characterize presymptomatic abnormalities that predict progression to clinical disease.


Subject(s)
Lung Diseases, Interstitial/diagnosis , Phenotype , Adult , Aged , Asymptomatic Diseases , Biomarkers/metabolism , Biopsy , Bronchoalveolar Lavage , Bronchoscopy , Case-Control Studies , DNA, Viral/analysis , Female , Gene Frequency , Genetic Markers , Herpesviridae/genetics , Herpesviridae/isolation & purification , Humans , Lung/diagnostic imaging , Lung/metabolism , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/virology , Male , Middle Aged , Mucin-5B/genetics , Polymorphism, Genetic , Prospective Studies , Tomography, X-Ray Computed
19.
Am J Respir Cell Mol Biol ; 53(1): 50-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25375039

ABSTRACT

Characterization of markers that identify activated macrophages could advance understanding of inflammatory lung diseases and facilitate development of novel methodologies for monitoring disease activity. We investigated whether folate receptor ß (FRß) expression could be used to identify and quantify activated macrophages in the lungs during acute inflammation induced by Escherichia coli LPS. We found that FRß expression was markedly increased in lung macrophages at 48 hours after intratracheal LPS. In vivo molecular imaging with a fluorescent probe (cyanine 5 polyethylene glycol folate) showed that the fluorescence signal over the chest peaked at 48 hours after intratracheal LPS and was markedly attenuated after depletion of macrophages. Using flow cytometry, we identified the cells responsible for uptake of cyanine 5-conjugated folate as FRß(+) interstitial macrophages and pulmonary monocytes, which coexpressed markers associated with an M1 proinflammatory macrophage phenotype. These findings were confirmed using a second model of acute lung inflammation generated by inducible transgenic expression of an NF-κB activator in airway epithelium. Using CC chemokine receptor 2-deficient mice, we found that FRß(+) macrophage/monocyte recruitment was dependent on the monocyte chemotactic protein-1/CC chemokine receptor 2 pathway. Together, our results demonstrate that folate-based molecular imaging can be used as a noninvasive approach to detect classically activated monocytes/macrophages recruited to the lungs during acute inflammation.


Subject(s)
Folate Receptor 2/metabolism , Gene Expression Regulation , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Molecular Imaging , Pneumonia/metabolism , Acute Disease , Animals , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Escherichia coli/chemistry , Fluorescent Dyes/pharmacology , Folate Receptor 2/genetics , Lipopolysaccharides/chemistry , Lipopolysaccharides/toxicity , Mice , Mice, Knockout , Pneumonia/chemically induced , Pneumonia/genetics , Pneumonia/pathology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism
20.
J Immunol ; 190(9): 4786-94, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23530143

ABSTRACT

Although reactive oxygen species (ROS) produced by NADPH oxidase are known to regulate inflammatory responses, the impact of ROS on intracellular signaling pathways is incompletely understood. In these studies, we treated wild-type (WT) and p47(phox)-deficient mice with LPS to investigate mechanisms by which NADPH oxidase regulates signaling through the NF-κB pathway. After intratracheal instillation of LPS, ROS generation was impaired in p47(phox)(-/-) mice, whereas these mice had increased neutrophilic alveolitis and greater lung injury compared with WT controls. In mice interbred with transgenic NF-κB reporters (HIV-long terminal repeat/luciferase [HLL]), we found exaggerated LPS-induced NF-κB activation and increased expression of proinflammatory cytokines in lungs of p47(phox)(-/-)/HLL mice compared with controls. Both lung macrophages and bone marrow-derived macrophages (BMDMs) isolated from p47(phox)(-/-)/HLL mice showed enhanced LPS-stimulated NF-κB activity compared with controls. Although nuclear translocation of NF-κB proteins was similar between genotypes, EMSAs under nonreducing conditions showed increased DNA binding in p47(phox)(-/-)/HLL BMDMs, suggesting that ROS production reduces NF-κB binding to DNA without affecting nuclear translocation. Increased intracellular reduced glutathione/glutathione disulfide ratio and greater nuclear redox factor 1 (Ref-1) levels were present in p47(phox)(-/-)/HLL compared with WT BMDMs, pointing to NADPH oxidase modulating intracellular redox status in macrophages. Treatment with the Ref-1-specific inhibitor E3330 or hydrogen peroxide inhibited LPS-induced NF-κB activation in p47(phox)(-/-)/HLL BMDMs but not in WT/HLL cells. Consistent with these findings, small interfering RNA against Ref-1 selectively reduced NF-κB activity in LPS-treated p47(phox)(-/-)/HLL BMDMs. Together, these results indicate that NADPH oxidase limits LPS-induced NF-κB transcriptional activity through regulation of intracellular redox state.


Subject(s)
Lipopolysaccharides/immunology , Lung Injury/metabolism , NADPH Oxidases/metabolism , NF-kappa B/metabolism , Pneumonia/metabolism , Animals , DNA-(Apurinic or Apyrimidinic Site) Lyase/immunology , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/immunology , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/immunology , Mice , NADPH Oxidases/immunology , NF-kappa B/immunology , Neutrophils/immunology , Neutrophils/metabolism , Oxidation-Reduction , Pneumonia/chemically induced , Pneumonia/immunology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL