Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Hepatology ; 69(5): 2061-2075, 2019 05.
Article in English | MEDLINE | ID: mdl-30561769

ABSTRACT

Patients with hepatocellular carcinoma (HCC) have a poor prognosis and limited therapeutic options. Alpha-fetoprotein (AFP) is often expressed at high levels in HCC and is an established clinical biomarker of the disease. Expression of AFP in nonmalignant liver can occur, particularly in a subset of progenitor cells and during chronic inflammation, at levels typically lower than in HCC. This cancer-specific overexpression indicates that AFP may be a promising target for immunotherapy. We verified expression of AFP in normal and diseased tissue and generated an affinity-optimized T-cell receptor (TCR) with specificity to AFP/HLA-A*02+ tumors. Expression of AFP was investigated using database searches, by qPCR, and by immunohistochemistry (IHC) analysis of a panel of human tissue samples, including normal, diseased, and malignant liver. Using in vitro mutagenesis and screening, we generated a TCR that recognizes the HLA-A*02-restricted AFP158-166 peptide, FMNKFIYEI, with an optimum balance of potency and specificity. These properties were confirmed by an extension of the alanine scan (X-scan) and testing TCR-transduced T cells against normal and tumor cells covering a variety of tissues, cell types, and human leukocyte antigen (HLA) alleles. Conclusion: We have used a combination of physicochemical, in silico, and cell biology methods for optimizing a TCR for improved affinity and function, with properties that are expected to allow TCR-transduced T cells to differentiate between antigen levels on nonmalignant and cancer cells. T cells transduced with this TCR constitute the basis for a trial of HCC adoptive T-cell immunotherapy.


Subject(s)
Carcinoma, Hepatocellular/immunology , HLA-A2 Antigen/metabolism , Liver Neoplasms/immunology , Receptors, Antigen, T-Cell/therapeutic use , alpha-Fetoproteins/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Hep G2 Cells , Humans , Immunotherapy/methods , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology
2.
J Biol Chem ; 291(5): 2246-59, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26644469

ABSTRACT

Cell signaling pathways are noisy communication channels, and statistical measures derived from information theory can be used to quantify the information they transfer. Here we use single cell signaling measures to calculate mutual information as a measure of information transfer via gonadotropin-releasing hormone (GnRH) receptors (GnRHR) to extracellular signal-regulated kinase (ERK) or nuclear factor of activated T-cells (NFAT). This revealed mutual information values <1 bit, implying that individual GnRH-responsive cells cannot unambiguously differentiate even two equally probable input concentrations. Addressing possible mechanisms for mitigation of information loss, we focused on the ERK pathway and developed a stochastic activation model incorporating negative feedback and constitutive activity. Model simulations revealed interplay between fast (min) and slow (min-h) negative feedback loops with maximal information transfer at intermediate feedback levels. Consistent with this, experiments revealed that reducing negative feedback (by expressing catalytically inactive ERK2) and increasing negative feedback (by Egr1-driven expression of dual-specificity phosphatase 5 (DUSP5)) both reduced information transfer from GnRHR to ERK. It was also reduced by blocking protein synthesis (to prevent GnRH from increasing DUSP expression) but did not differ for different GnRHRs that do or do not undergo rapid homologous desensitization. Thus, the first statistical measures of information transfer via these receptors reveals that individual cells are unreliable sensors of GnRH concentration and that this reliability is maximal at intermediate levels of ERK-mediated negative feedback but is not influenced by receptor desensitization.


Subject(s)
Feedback, Physiological , Gene Expression Regulation, Enzymologic , Gonadotropin-Releasing Hormone/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NFATC Transcription Factors/metabolism , Receptors, LHRH/metabolism , Catalysis , Computer Simulation , Cycloheximide/chemistry , Dual-Specificity Phosphatases/metabolism , HeLa Cells , Humans , Models, Theoretical , Protein Synthesis Inhibitors/chemistry , Signal Transduction , Stochastic Processes
3.
J Biol Chem ; 289(11): 7873-83, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24482225

ABSTRACT

Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses that stimulate synthesis and secretion of pituitary gonadotropin hormones and thereby mediate control of reproduction. It acts via G-protein-coupled receptors to stimulate effectors, including ERK. Information could be encoded in GnRH pulse frequency, width, amplitude, or other features of pulse shape, but the relative importance of these features is unknown. Here we examine this using automated fluorescence microscopy and mathematical modeling, focusing on ERK signaling. The simplest scenario is one in which the system is linear, and response dynamics are relatively fast (compared with the signal dynamics). In this case integrated system output (ERK activation or ERK-driven transcription) will be roughly proportional to integrated input, but we find that this is not the case. Notably, we find that relatively slow response kinetics lead to ERK activity beyond the GnRH pulse, and this reduces sensitivity to pulse width. More generally, we show that the slowing of response kinetics through the signaling cascade creates a system that is robust to pulse width. We, therefore, show how various levels of response kinetics synergize to dictate system sensitivity to different features of pulsatile hormone input. We reveal the mathematical and biochemical basis of a dynamic GnRH signaling system that is robust to changes in pulse amplitude and width but is sensitive to changes in receptor occupancy and frequency, precisely the features that are tightly regulated and exploited to exert physiological control in vivo.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Gonadotropin-Releasing Hormone/metabolism , Active Transport, Cell Nucleus , Gene Expression Regulation , Green Fluorescent Proteins/metabolism , HeLa Cells , Hormones/metabolism , Humans , Kinetics , Luciferases/metabolism , Models, Theoretical , Promoter Regions, Genetic , Signal Transduction , Transcriptome
4.
Front Neuroendocrinol ; 33(1): 45-66, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21802439

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in the mammalian genome. They are activated by a multitude of different ligands that elicit rapid intracellular responses to regulate cell function. Unsurprisingly, a large proportion of therapeutic agents target these receptors. The paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus are important mediators in homeostatic control. Many modulators of PVN/SON activity, including neurotransmitters and hormones act via GPCRs--in fact over 100 non-chemosensory GPCRs have been detected in either the PVN or SON. This review provides a comprehensive summary of the expression of GPCRs within the PVN/SON, including data from recent transcriptomic studies that potentially expand the repertoire of GPCRs that may have functional roles in these hypothalamic nuclei. We also present some aspects of the regulation and known roles of GPCRs in PVN/SON, which are likely complemented by the activity of 'orphan' GPCRs.


Subject(s)
Paraventricular Hypothalamic Nucleus/physiology , Receptors, G-Protein-Coupled/physiology , Signal Transduction/physiology , Supraoptic Nucleus/physiology , Animals , Gene Expression Regulation , Homeostasis , Humans , Immunohistochemistry , Mice , Neurosecretory Systems/metabolism , Rats , Receptors, G-Protein-Coupled/biosynthesis
5.
J Immunother ; 46(4): 132-144, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36826388

ABSTRACT

Adoptive cell therapy with T cells expressing affinity-enhanced T-cell receptors (TCRs) is a promising treatment for solid tumors. Efforts are ongoing to further engineer these T cells to increase the depth and durability of clinical responses and broaden efficacy toward additional indications. In the present study, we investigated one such approach: T cells were transduced with a lentiviral vector to coexpress an affinity-enhanced HLA class I-restricted TCR directed against MAGE-A4 alongside a CD8α coreceptor. We hypothesized that this approach would enhance CD4 + T-cell helper and effector functions, possibly leading to a more potent antitumor response. Activation of transduced CD4 + T cells was measured by detecting CD40 ligand expression on the surface and cytokine and chemokine secretion from CD4 + T cells and dendritic cells cultured with melanoma-associated antigen A4 + tumor cells. In addition, T-cell cytotoxic activity against 3-dimensional tumor spheroids was measured. Our data demonstrated that CD4 + T cells coexpressing the TCR and CD8α coreceptor displayed enhanced responses, including CD40 ligand expression, interferon-gamma secretion, and cytotoxic activity, along with improved dendritic cell activation. Therefore, our study supports the addition of the CD8α coreceptor to HLA class I-restricted TCR-engineered T cells to enhance CD4 + T-cell functions, which may potentially improve the depth and durability of antitumor responses in patients.


Subject(s)
Antineoplastic Agents , CD40 Ligand , Humans , CD4-Positive T-Lymphocytes , T-Lymphocytes, Helper-Inducer , Receptors, Antigen, T-Cell/metabolism
6.
Mol Cell Endocrinol ; 437: 108-119, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27492965

ABSTRACT

Apelin acts via the G protein-coupled apelin receptor (APJ) to mediate effects on cardiovascular and fluid homeostasis. G protein-coupled receptor (GPCR) trafficking has an important role in the regulation of receptor signalling pathways and cellular functions, however in the case of APJ the mechanisms and proteins involved in apelin-induced trafficking are not well understood. We generated a stable HEK-293 cell line expressing N-terminus HA-tagged mouse (m) APJ, and used a semi-automated imaging protocol to quantitate APJ trafficking and ERK1/2 activation following stimulation with [Pyr1]apelin-13. The mechanisms of [Pyr1]apelin-13-induced internalization and desensitization were explored using dominant-negative mutant (DNM) cDNA constructs of G protein-coupled receptor kinase 2 (GRK2), ß-arrestin1, EPS15 and dynamin. The di-phosphorylated ERK1/2 (ppERK1/2) response to [Pyr1]apelin-13 desensitized during sustained stimulation, due to upstream APJ-specific adaptive changes. Furthermore, [Pyr1]apelin-13 stimulation caused internalization of mAPJ via clathrin coated vesicles (CCVs) and also caused a rapid reduction in cell surface and whole cell HA-mAPJ. Our data suggest that upon continuous agonist exposure GRK2-mediated phosphorylation targets APJ to CCVs that are internalized from the cell surface in a ß-arrestin1-independent, EPS15- and dynamin-dependent manner. Internalization does not appear to contribute to the desensitization of APJ-mediated ppERK1/2 activation in these cells.


Subject(s)
Endocytosis/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Receptors, G-Protein-Coupled/metabolism , Apelin Receptors , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Phosphorylation/drug effects , Time Factors
7.
J Endocrinol ; 219(1): R13-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23943882

ABSTRACT

The apelin receptor (APJ; gene symbol APLNR) is a member of the G protein-coupled receptor gene family. Neural gene expression patterns of APJ, and its cognate ligand apelin, in the brain implicate the apelinergic system in the regulation of a number of physiological processes. APJ and apelin are highly expressed in the hypothalamo-neurohypophysial system, which regulates fluid homeostasis, in the hypothalamic-pituitary-adrenal axis, which controls the neuroendocrine response to stress, and in the forebrain and lower brainstem regions, which are involved in cardiovascular function. Recently, apelin, synthesised and secreted by adipocytes, has been described as a beneficial adipokine related to obesity, and there is growing awareness of a potential role for apelin and APJ in glucose and energy metabolism. In this review we provide a comprehensive overview of the structure, expression pattern and regulation of apelin and its receptor, as well as the main second messengers and signalling proteins activated by apelin. We also highlight the physiological and pathological roles that support this system as a novel therapeutic target for pharmacological intervention in treating conditions related to altered water balance, stress-induced disorders such as anxiety and depression, and cardiovascular and metabolic disorders.


Subject(s)
Homeostasis/drug effects , Intercellular Signaling Peptides and Proteins/physiology , Receptors, G-Protein-Coupled/physiology , Amino Acid Sequence , Animals , Apelin , Apelin Receptors , Cardiovascular System/drug effects , Central Nervous System/metabolism , Extracellular Signal-Regulated MAP Kinases/physiology , Homeostasis/physiology , Humans , Hypothalamo-Hypophyseal System/metabolism , Intercellular Signaling Peptides and Proteins/agonists , Intercellular Signaling Peptides and Proteins/biosynthesis , Intercellular Signaling Peptides and Proteins/genetics , Mice , Neovascularization, Pathologic , Nitric Oxide Synthase/metabolism , Obesity , Phosphatidylinositol 3-Kinases/physiology , Pituitary-Adrenal System/metabolism , Protein Multimerization , Proto-Oncogene Proteins c-akt/physiology , Rats , Reactive Oxygen Species/metabolism , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/physiology , Tissue Distribution
8.
Peptides ; 33(1): 139-48, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22197493

ABSTRACT

The G protein-coupled apelin receptor (APJ) binds the endogenous peptide apelin and has been shown to have roles in many physiological systems. Thus far, distribution studies have predominantly been conducted in the rat and there is limited knowledge of the cellular distribution of APJ in mouse or human tissues. As recent functional studies have been conducted in APJ knock-out mice (APJ KO), in this study we undertook to characterize APJ mRNA and I(125)[Pyr(1)]apelin-13 binding site distribution in mouse tissues to enable correlation of distribution with function. We have utilized in situ hybridization histochemistry (ISHH) using APJ riboprobes, which revealed strong hybridization specifically in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus and in the anterior pituitary, with marginally lower levels in the posterior pituitary. In the periphery, strong hybridization was observed in the lung, heart, adrenal cortex, renal medulla, ovary and uterus. Autoradiographic binding to APJ with I(125)[Pyr(1)]apelin-13 exhibited significant binding in the anterior pituitary, while lower levels were observed in the posterior pituitary and PVN and SON. In the periphery, strong receptor binding was observed in tissues exhibiting intense riboprobe hybridization, indicating a good correlation between receptor transcription and translation. While the distribution of APJ mRNA and functional protein in the mouse shows similarities to that of the rat, we report a species difference in central APJ distribution and in the pituitary gland.


Subject(s)
Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Adipokines , Adrenal Cortex/metabolism , Animals , Apelin , Apelin Receptors , Autoradiography/methods , Binding Sites , Brain/metabolism , Female , In Situ Hybridization/methods , Intercellular Signaling Peptides and Proteins/metabolism , Kidney/metabolism , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Ovary/metabolism , Rats , Species Specificity , Uterus/metabolism
9.
J Endocrinol ; 202(1): 123-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19395447

ABSTRACT

The apelinergic system has a widespread expression in the central nervous system (CNS) including the paraventricular nucleus, supraoptic nucleus and median eminence, and isolated cells of the anterior lobe of the pituitary. This pattern of expression in hypothalamic nuclei known to contain corticotrophin-releasing factor (CRF) and vasopressin (AVP) and to co-ordinate endocrine responses to stress has generated interest in a role for apelin in the modulation of stress, perhaps via the regulation of hormone release from the pituitary. In this study, to determine whether apelin has a central role in the regulation of CRF and AVP neurones, we investigated the effect of i.c.v. administration of pGlu-apelin-13 on neuroendocrine function in male mice pre-treated with the CRF receptor antagonist, alpha-helical CRF(9-41), and in mice-lacking functional AVP V1b receptors (V1bR KO). Administration of pGlu-apelin-13 (1 mg/kg i.c.v.) resulted in significant increases in plasma ACTH and corticosterone (CORT), which were significantly reduced by pre-treatment with alpha-helical CRF(9-41), indicating the involvement of a CRF-dependent mechanism. Additionally, pGlu-apelin-13-mediated increases in both plasma ACTH and CORT were significantly attenuated in V1bR KO animals when compared with wild-type controls, indicating a role for the vasopressinergic system in the regulation of the effects of apelin on neuroendocrine function. Together, these data confirm that the in vivo effects of apelin on hypothalamic-pituitary-adrenal neuroendocrine function appear to be mediated through both CRF- and AVP-dependent mechanisms.


Subject(s)
Corticotropin-Releasing Hormone/physiology , Hypothalamo-Hypophyseal System/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Pituitary-Adrenal System/drug effects , Vasopressins/physiology , Animals , Corticotropin-Releasing Hormone/blood , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/pharmacology , Hormone Antagonists/pharmacology , Hydrocortisone/blood , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurosecretory Systems/drug effects , Neurosecretory Systems/physiology , Peptide Fragments/pharmacology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , Vasopressins/metabolism
10.
J Endocrinol ; 202(3): 453-62, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19578099

ABSTRACT

The apelinergic system, comprised of apelin and its G protein-coupled receptor (APJ; APLNR as given in MGI Database), is expressed within key regions of the central nervous system associated with arginine vasopressin (AVP) synthesis and release as well as in structures involved in the control of drinking behaviour, including the magnocellular neurones of the hypothalamus, circumventricular organs, and the pituitary gland. This localisation is indicative of a possible functional role in fluid homeostasis. We investigated a role for APJ in the regulation of fluid balance using mice deficient for the receptor. Male APJ wild-type and knockout (APJ(-/-)) mice were housed in metabolic cages to allow determination of water intake and urine volume and osmolality. When provided with free access to water, APJ(-/-) mice drank significantly less than wild-types, while their urine volume and osmolality did not differ. Water deprivation for 24 h significantly reduced urine volume and increased osmolality in wild-type but not in APJ(-/-) mice. Baseline plasma AVP concentration increased comparably in both wild-type and APJ(-/-) mice following dehydration; however, APJ(-/-) mice were unable to concentrate their urine to the same extent as wild-type mice in response to the V2 agonist desmopressin. Analysis of c-fos (Fos as given in MGI Database) mRNA expression in response to dehydration showed attenuation of expression within the subfornical organ, accentuated expression in the paraventricular nucleus, but no differences in expression in the supraoptic nucleus nor median pre-optic nucleus in APJ(-/-) mice compared with wild-type. These findings demonstrate a physiological role for APJ in mechanisms of water intake and fluid retention and suggest an anti-diuretic effect of apelin in vivo.


Subject(s)
Carrier Proteins/metabolism , Homeostasis/physiology , Hypothalamus/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Water-Electrolyte Balance/physiology , Adipokines , Animals , Antidiuretic Agents/pharmacology , Apelin , Apelin Receptors , Arginine Vasopressin/blood , Arginine Vasopressin/genetics , Body Fluids/physiology , Deamino Arginine Vasopressin/pharmacology , Drinking/physiology , Female , Genotype , Homeostasis/drug effects , Intercellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osmolar Concentration , Pregnancy , Urine , Water Deprivation/physiology , Water-Electrolyte Balance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL