Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 622(7984): 784-793, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821707

ABSTRACT

The Mexico City Prospective Study is a prospective cohort of more than 150,000 adults recruited two decades ago from the urban districts of Coyoacán and Iztapalapa in Mexico City1. Here we generated genotype and exome-sequencing data for all individuals and whole-genome sequencing data for 9,950 selected individuals. We describe high levels of relatedness and substantial heterogeneity in ancestry composition across individuals. Most sequenced individuals had admixed Indigenous American, European and African ancestry, with extensive admixture from Indigenous populations in central, southern and southeastern Mexico. Indigenous Mexican segments of the genome had lower levels of coding variation but an excess of homozygous loss-of-function variants compared with segments of African and European origin. We estimated ancestry-specific allele frequencies at 142 million genomic variants, with an effective sample size of 91,856 for Indigenous Mexican ancestry at exome variants, all available through a public browser. Using whole-genome sequencing, we developed an imputation reference panel that outperforms existing panels at common variants in individuals with high proportions of central, southern and southeastern Indigenous Mexican ancestry. Our work illustrates the value of genetic studies in diverse populations and provides foundational imputation and allele frequency resources for future genetic studies in Mexico and in the United States, where the Hispanic/Latino population is predominantly of Mexican descent.


Subject(s)
Exome Sequencing , Genome, Human , Genotype , Hispanic or Latino , Adult , Humans , Africa/ethnology , Americas/ethnology , Europe/ethnology , Gene Frequency/genetics , Genetics, Population , Genome, Human/genetics , Genotyping Techniques , Hispanic or Latino/genetics , Homozygote , Loss of Function Mutation/genetics , Mexico , Prospective Studies
3.
Ind Health ; 57(6): 741-744, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-30918138

ABSTRACT

The aim of this study was to ascertain whether long-term occupational exposure to nanoparticles would affect relative leukocyte telomere length (LrTL). We analysed occupational exposure to size-resolved aerosol particles, with special emphasis on nanoparticles at two workshops: i/ the production of nanocomposites containing metal oxides; ii/ laboratory to test experimental exposure of nano-CuO to rodents. Thirty five exposed researchers (age 39.5 ± 12.6 yr; exposure duration 6.0 ± 3.7 yr) and 43 controls (40.4 ± 10.5 yr) were examined. LrTL did not significantly (p=0.14) differ between the exposed researchers (0.92 ± 0.13) and controls (0.86 ± 0.15). In addition, no significant correlation (r=-0.22, p=0.22) was detected between the duration of occupational exposure and LrTL. The results remained non-significant after multiple adjustments for age, sex and smoking status. Our pilot results suggest that relative leukocyte telomere length is not affected by occupational exposure to nanoparticles.


Subject(s)
Metal Nanoparticles/adverse effects , Occupational Exposure/adverse effects , Research Personnel , Telomere Shortening/drug effects , Adult , Air Pollutants, Occupational/adverse effects , Czech Republic/epidemiology , Female , Humans , Leukocytes , Male , Middle Aged , Oxides
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(3 Pt 1): 031902, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15903454

ABSTRACT

Kinesins are processive motor proteins that move along microtubules in a stepwise manner, and their motion is powered by the hydrolysis of ATP. Recent experiments have investigated the coupling between the individual steps of single kinesin molecules and ATP hydrolysis, taking explicitly into account forward steps, backward steps, and detachments. A theoretical study of mechanochemical coupling in kinesins, which extends the approach used successfully to describe the dynamics of motor proteins, is presented. The possibility of irreversible detachments of kinesins from the microtubules is explicitly taken into account. Using the method of first-passage times, experimental data on the mechanochemical coupling in kinesins are fully described using the simplest two-state model. It is shown that the dwell times for the kinesin to move one step forward or backward, or to dissociate irreversibly, are the same, although the probabilities of these events are different. It is concluded that the current theoretical view-that only the forward motion of the motor protein molecule is coupled to ATP hydrolysis--is consistent with all available experimental observations for kinesins.


Subject(s)
Adenosine Triphosphate/chemistry , Kinesins/chemistry , Microtubules/chemistry , Models, Biological , Models, Chemical , Molecular Motor Proteins/chemistry , Movement/physiology , Adenosine Triphosphate/metabolism , Computer Simulation , Electrochemistry/methods , Kinesins/metabolism , Kinetics , Mechanics , Microtubules/metabolism , Models, Statistical , Molecular Motor Proteins/physiology , Motion , Protein Binding , Protein Conformation , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL