Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters

Publication year range
1.
Diabetologia ; 66(1): 190-200, 2023 01.
Article in English | MEDLINE | ID: mdl-36194248

ABSTRACT

AIMS/HYPOTHESIS: The clinical importance of fat deposition in the liver and pancreas is increasingly recognised. However, to what extent deposition of fat in these two depots is affected by intermediate variables is unknown. The aim of this work was to conduct a mediation analysis with a view to uncovering the metabolic traits that underlie the relationship between liver fat and intrapancreatic fat deposition (IPFD) and quantifying their effect. METHODS: All participants underwent MRI/magnetic resonance spectroscopy on the same 3.0 T scanner to determine liver fat and IPFD. IPFD of all participants was quantified manually by two independent raters in duplicate. A total of 16 metabolic traits (representing markers of glucose metabolism, incretins, lipid panel, liver enzymes, pancreatic hormones and their derivatives) were measured in blood. Mediation analysis was conducted, taking into account age, sex, ethnicity and BMI. Significance of mediation was tested by computing bias-corrected bootstrap CIs with 5000 repetitions. RESULTS: A total of 353 individuals were studied. Plasma glucose, HDL-cholesterol and triacylglycerol mediated 6.8%, 17.9% and 24.3%, respectively, of the association between liver fat and IPFD. Total cholesterol, LDL-cholesterol, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transpeptidase, insulin, glucagon, amylin, C-peptide, HbA1c, glucagon-like peptide-1 and gastric inhibitory peptide did not mediate the association between liver fat and IPFD. CONCLUSIONS/INTERPRETATION: At least one-quarter of the association between liver fat and IPFD is mediated by specific blood biomarkers (triacylglycerol, HDL-cholesterol and glucose), after accounting for potential confounding by age, sex, ethnicity and BMI. This unveils the complexity of the association between the two fat depots and presents specific targets for intervention.


Subject(s)
Liver , Mediation Analysis , Humans , Cholesterol
2.
Int J Obes (Lond) ; 47(9): 833-840, 2023 09.
Article in English | MEDLINE | ID: mdl-37420008

ABSTRACT

BACKGROUND/OBJECTIVES: Some individuals with overweight/obesity may be relatively metabolically healthy (MHO) and have a lower risk of cardiovascular disease than those with metabolically unhealthy overweight/obesity (MUO). We aimed to compare changes in body weight and cardiometabolic risk factors and type 2 diabetes incidence during a lifestyle intervention between individuals with MHO vs MUO. METHODS: This post-hoc analysis included 1012 participants with MHO and 1153 participants with MUO at baseline in the randomized trial PREVIEW. Participants underwent an eight-week low-energy diet phase followed by a 148-week lifestyle-based weight-maintenance intervention. Adjusted linear mixed models and Cox proportional hazards regression models were used. RESULTS: There were no statistically significant differences in weight loss (%) between participants with MHO vs MUO over 156 weeks. At the end of the study, weight loss was 2.7% (95% CI, 1.7%-3.6%) in participants with MHO and 3.0% (2.1%-4.0%) in those with MUO. After the low-energy diet phase, participants with MHO had smaller decreases in triglyceride (mean difference between MHO vs MUO 0.08 mmol·L-1 [95% CI, 0.04-0.12]; P < 0.001) but similar reductions in fasting glucose and HOMA-IR than those with MUO. However, at the end of weight maintenance, those with MHO had greater reductions in triglyceride (mean difference -0.08 mmol·L-1 [-0.12--0.04]; P < 0.001), fasting glucose, 2-hour glucose (difference -0.28 mmol·L-1 [-0.41--0.16]; P < 0.001), and HOMA-IR than those with MUO. Participants with MHO had smaller decreases in diastolic blood pressure and HbA1c and greater decreases in HDL cholesterol after weight loss than those with MUO, whereas the statistically significant differences disappeared at the end of weight maintenance. Participants with MHO had lower 3-year type 2 diabetes incidence than those with MUO (adjusted hazard ratio 0.37 [0.20-0.66]; P < 0.001). CONCLUSIONS: Individuals with MUO had greater improvements in some cardiometabolic risk factors during the low-energy diet phase, but had smaller improvements during long-term lifestyle intervention than those with MHO.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Metabolic Syndrome , Humans , Body Mass Index , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/prevention & control , Glucose , Incidence , Metabolic Syndrome/epidemiology , Obesity/complications , Obesity/epidemiology , Obesity/therapy , Overweight , Phenotype , Risk Factors , Triglycerides
3.
FASEB J ; 36(7): e22371, 2022 07.
Article in English | MEDLINE | ID: mdl-35704337

ABSTRACT

Untargeted metabolomics of blood samples has become widely applied to study metabolic alterations underpinning disease and to identify biomarkers. However, understanding the relevance of a blood metabolite marker can be challenging if it is unknown whether it reflects the concentration in relevant tissues. To explore this field, metabolomic and lipidomic profiles of plasma, four sites of adipose tissues (ATs) from peripheral or central depot, two sites of muscle tissue, and liver tissue from a group of nondiabetic women with obesity who were scheduled to undergo bariatric surgery (n = 21) or other upper GI surgery (n = 5), were measured by liquid chromatography coupled with mass spectrometry. Relationships between plasma and tissue profiles were examined using Pearson correlation analysis subject to Benjamini-Hochberg correction. Plasma metabolites and lipids showed the highest number of significantly positive correlations with their corresponding concentrations in liver tissue, including lipid species of ceramide, mono- and di-hexosylceramide, sphingomyelin, phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine, dimethyl phosphatidylethanolamine, ether-linked PC, ether-linked PE, free fatty acid, cholesteryl ester, diacylglycerol and triacylglycerol, and polar metabolites linked to several metabolic functions and gut microbial metabolism. Plasma also showed significantly positive correlations with muscle for several phospholipid species and polar metabolites linked to metabolic functions and gut microbial metabolism, and with AT for several triacylglycerol species. In conclusion, plasma metabolomic and lipidomic profiles were reflective more of the liver profile than any of the muscle or AT sites examined in the present study. Our findings highlighted the importance of taking into consideration the metabolomic relationship of various tissues with plasma when postulating plasma metabolites marker to underlying mechanisms occurring in a specific tissue.


Subject(s)
Metabolome , Phosphatidylethanolamines , Biomarkers/metabolism , Ethers/metabolism , Female , Humans , Liver/metabolism , Metabolomics/methods , Muscles/metabolism , Obesity/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Triglycerides/metabolism
4.
Diabetes Obes Metab ; 25(11): 3337-3346, 2023 11.
Article in English | MEDLINE | ID: mdl-37529874

ABSTRACT

AIM: To investigate the associations of components of the lipid panel (and its derivatives) with intra-pancreatic fat deposition (IPFD). METHODS: All participants underwent abdominal magnetic resonance imaging on the same 3.0-Tesla scanner and IPFD was quantified. Blood samples were collected in the fasted state for analysis of lipid panel components. A series of linear regression analyses was conducted, adjusting for age, sex, ethnicity, body mass index, fasting plasma glucose, homeostatic model assessment of insulin resistance, and liver fat deposition. RESULTS: A total of 348 participants were included. Remnant cholesterol (P = 0.010) and triglyceride levels (P = 0.008) were positively, and high-density lipoprotein cholesterol level (P = 0.001) was negatively, associated with total IPFD in the most adjusted model. Low-density lipoprotein cholesterol and total cholesterol were not significantly associated with total IPFD. Of the lipid panel components investigated, remnant cholesterol explained the greatest proportion (9.9%) of the variance in total IPFD. CONCLUSION: Components of the lipid panel have different associations with IPFD. This may open up new opportunities for improving outcomes in people at high risk for cardiovascular diseases (who have normal low-density lipoprotein cholesterol) by reducing IPFD.


Subject(s)
Insulin Resistance , Pancreas , Humans , Cholesterol, LDL , Pancreas/diagnostic imaging , Cholesterol , Body Mass Index , Triglycerides , Cholesterol, HDL
5.
BMC Public Health ; 23(1): 1666, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37649005

ABSTRACT

BACKGROUND: Sedentary lifestyle and unhealthy diet combined with overweight are risk factors for type 2 diabetes (T2D). Lifestyle interventions with weight-loss are effective in T2D-prevention, but unsuccessful completion and chronic stress may hinder efficacy. Determinants of chronic stress and premature cessation at the start of the 3-year PREVIEW study were examined. METHODS: Baseline Quality of Life (QoL), social support, primary care utilization, and mood were examined as predictors of intervention cessation and chronic stress for participants aged 25 to 70 with prediabetes (n = 2,220). Moderating effects of sex and socio-economic status (SES) and independence of predictor variables of BMI were tested. RESULTS: Participants with children, women, and higher SES quitted intervention earlier than those without children, lower SES, and men. Lower QoL, lack of family support, and primary care utilization were associated with cessation. Lower QoL and higher mood disturbances were associated with chronic stress. Predictor variables were independent (p ≤ .001) from BMI, but moderated by sex and SES. CONCLUSIONS: Policy-based strategy in public health should consider how preventive interventions may better accommodate different individual states and life situations, which could influence intervention completion. Intervention designs should enable in-built flexibility in delivery enabling response to individual needs. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01777893.


Subject(s)
Diabetes Mellitus, Type 2 , Quality of Life , Child , Female , Humans , Male , Diabetes Mellitus, Type 2/prevention & control , Economic Factors , Life Style , Primary Health Care
6.
Appetite ; 184: 106490, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36781111

ABSTRACT

Gastrointestinal functions, particularly pyloric motility and the gut hormones, cholecystokinin and peptide YY, contribute to the regulation of acute energy intake. Bitter tastants modulate these functions, but may, in higher doses, induce GI symptoms. The aim of this study was to evaluate the effects of both dose and delivery location of a bitter hop extract (BHE) on antropyloroduodenal pressures, plasma cholecystokinin and peptide YY, appetite perceptions, gastrointestinal symptoms and energy intake in healthy-weight men. The study consisted of two consecutive parts, with part A including n = 15, and part B n = 11, healthy, lean men (BMI 22.6 ± 1.1 kg/m2, aged 25 ± 3 years). In randomised, double-blind fashion, participants received in part A, BHE in doses of either 100 mg ("ID-BHE-100") or 250 mg ("ID-BHE-250"), or vehicle (canola oil; "ID-control") intraduodenally, or in part B, 250 mg BHE ("IG-BHE-250") or vehicle ("IG-control") intragastrically. Antropyloroduodenal pressures, hormones, appetite and symptoms were measured for 180 min, energy intake from a standardised buffet-meal was quantified subsequently. ID-BHE-250, but not ID-BHE-100, had modest, and transient, effects to stimulate pyloric pressures during the first 90 min (P < 0.05), and peptide YY from t = 60 min (P < 0.05), but did not affect antral or duodenal pressures, cholecystokinin, appetite, gastrointestinal symptoms or energy intake. IG-BHE-250 had no detectable effects. In conclusion, BHE, when administered intraduodenally, in the selected higher dose, modestly affected some appetite-related gastrointestinal functions, but had no detectable effects when given in the lower dose or intragastrically. Thus, BHE, at none of the doses or routes of administration tested, has appetite- or energy intake-suppressant effects.


Subject(s)
Gastrointestinal Hormones , Humulus , Male , Humans , Peptide YY , Gastrointestinal Motility/physiology , Energy Intake/physiology , Cholecystokinin , Appetite/physiology , Dysgeusia , Double-Blind Method
7.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37762694

ABSTRACT

Ectopic lipid accumulation, including intra-pancreatic fat deposition (IPFD), exacerbates type 2 diabetes risk in susceptible individuals. Dysregulated circulating microRNAs (miRNAs) have been identified as correlating with clinical measures of pancreatitis, pancreatic cancer and type 1 diabetes. The aim of the current study was therefore to examine the association between circulating abundances of candidate miRNAs, IPFD and liver fat deposition as quantified using magnetic resonance imaging (MRI) and spectroscopy (MRS). Asian Chinese (n = 34; BMI = 26.7 ± 4.2 kg/m2) and European Caucasian (n = 34; BMI = 28.0 ± 4.5 kg/m2) females from the TOFI_Asia cohort underwent MRI and MRS analysis of pancreas (MR-%IPFD) and liver fat (MR-%liver fat), respectively, to quantify ectopic lipid deposition. Plasma miRNA abundances of a subset of circulatory miRNAs associated with IPFD and liver fat deposition were quantified by qRT-PCR. miR-21-3p and miR-320a-5p correlated with MR-%IPFD, plasma insulin and HOMA2-IR, but not MR-%liver fat. MR-%IPFD remained associated with decreasing miR-21-3p abundance following multivariate regression analysis. miR-21-3p and miR-320a were demonstrated to be negatively correlated with MR-%IPFD, independent of ethnicity. For miR-21-3p, this relationship persists with the inclusion of MR-%liver fat in the model, suggesting the potential for a wider application as a specific circulatory correlate of IPFD.

8.
Diabetologia ; 65(8): 1262-1277, 2022 08.
Article in English | MEDLINE | ID: mdl-35610522

ABSTRACT

AIMS/HYPOTHESIS: Lifestyle interventions are the first-line treatment option for body weight and cardiometabolic health management. However, whether age groups or women and men respond differently to lifestyle interventions is under debate. We aimed to examine age- and sex-specific effects of a low-energy diet (LED) followed by a long-term lifestyle intervention on body weight, body composition and cardiometabolic health markers in adults with prediabetes (i.e. impaired fasting glucose and/or impaired glucose tolerance). METHODS: This observational study used longitudinal data from 2223 overweight participants with prediabetes in the multicentre diabetes prevention study PREVIEW. The participants underwent a LED-induced rapid weight loss (WL) period followed by a 3 year lifestyle-based weight maintenance (WM) intervention. Changes in outcomes of interest in prespecified age (younger: 25-45 years; middle-aged: 46-54 years; older: 55-70 years) or sex (women and men) groups were compared. RESULTS: In total, 783 younger, 319 middle-aged and 1121 older adults and 1503 women and 720 men were included in the analysis. In the available case and complete case analyses, multivariable-adjusted linear mixed models showed that younger and older adults had similar weight loss after the LED, whereas older adults had greater sustained weight loss after the WM intervention (adjusted difference for older vs younger adults -1.25% [95% CI -1.92, -0.58], p<0.001). After the WM intervention, older adults lost more fat-free mass and bone mass and had smaller improvements in 2 h plasma glucose (adjusted difference for older vs younger adults 0.65 mmol/l [95% CI 0.50, 0.80], p<0.001) and systolic blood pressure (adjusted difference for older vs younger adults 2.57 mmHg [95% CI 1.37, 3.77], p<0.001) than younger adults. Older adults had smaller decreases in fasting and 2 h glucose, HbA1c and systolic blood pressure after the WM intervention than middle-aged adults. In the complete case analysis, the above-mentioned differences between middle-aged and older adults disappeared, but the direction of the effect size did not change. After the WL period, compared with men, women had less weight loss (adjusted difference for women vs men 1.78% [95% CI 1.12, 2.43], p<0.001) with greater fat-free mass and bone mass loss and smaller improvements in HbA1c, LDL-cholesterol and diastolic blood pressure. After the WM intervention, women had greater fat-free mass and bone mass loss and smaller improvements in HbA1c and LDL-cholesterol, while they had greater improvements in fasting glucose, triacylglycerol (adjusted difference for women vs men -0.08 mmol/l [-0.11, -0.04], p<0.001) and HDL-cholesterol. CONCLUSIONS/INTERPRETATION: Older adults benefited less from a lifestyle intervention in relation to body composition and cardiometabolic health markers than younger adults, despite greater sustained weight loss. Women benefited less from a LED followed by a lifestyle intervention in relation to body weight and body composition than men. Future interventions targeting older adults or women should take prevention of fat-free mass and bone mass loss into consideration. CLINICAL TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT01777893.


Subject(s)
Cardiovascular Diseases , Prediabetic State , Adult , Aged , Biomarkers , Blood Glucose , Cholesterol, HDL , Cholesterol, LDL , Female , Glucose , Humans , Life Style , Male , Middle Aged , Prediabetic State/therapy , Weight Loss/physiology
9.
Appetite ; 169: 105871, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34915106

ABSTRACT

This study aimed to identify biomarkers of appetite response, modelled using a dose-rising whey protein preload intervention. Female participants (n = 24) with body mass index (BMI) between 23 and 40 kg/m2 consumed preload beverages (0 g protein water control, WC; 12.5 g low-dose protein, LP; or 50.0 g high-dose protein, HP) after an overnight fast, in a randomised cross over design. Repeated venous blood samples were collected to measure plasma biomarkers of appetite response, including glucose, glucoregulatory peptides, gut peptides, and amino acids (AAs). Appetite was assessed using Visual Analogue Scales (VAS) and ad libitum energy intake (EI). Dose-rising protein beverage significantly changed the postprandial trajectory of almost all biomarkers (treatment*time, p < 0.05), but did not suppress postprandial appetite (treatment*time, p > 0.05) or EI (ANOVA, p = 0.799). Circulating glycine had the strongest association with appetite response. Higher area under the curve (AUC0-240) glycine was associated with lower EI (p = 0.026, trend). Furthermore, circulating glycine was associated with decreased Hunger in all treatment groups, whereas the associations of glucose, alanine and amylin with appetite were dependent on treatment groups. Multivariate models, incorporating multiple biomarkers, improved the estimation of appetite response (marginal R2, range: 0.13-0.43). In conclusion, whilst glycine, both alone and within a multivariate model, can estimate appetite response to both water and whey protein beverage consumption, a large proportion of variance in appetite response remains unexplained. Most biomarkers, when assessed in isolation, are poor predictors of appetite response, and likely of utility only in combination with VAS and EI.


Subject(s)
Glycine , Overweight , Appetite , Biomarkers , Blood Glucose/metabolism , Cross-Over Studies , Energy Intake/physiology , Female , Humans , Insulin , Postprandial Period , Whey Proteins
10.
Int J Obes (Lond) ; 45(8): 1844-1854, 2021 08.
Article in English | MEDLINE | ID: mdl-33994541

ABSTRACT

BACKGROUND: Excess visceral obesity and ectopic organ fat is associated with increased risk of cardiometabolic disease. However, circulating markers for early detection of ectopic fat, particularly pancreas and liver, are lacking. METHODS: Lipid storage in pancreas, liver, abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from 68 healthy or pre-diabetic Caucasian and Chinese women enroled in the TOFI_Asia study was assessed by magnetic resonance imaging/spectroscopy (MRI/S). Plasma metabolites were measured with untargeted liquid chromatography-mass spectroscopy (LC-MS). Multivariate partial least squares (PLS) regression identified metabolites predictive of VAT/SAT and ectopic fat; univariate linear regression adjusting for potential covariates identified individual metabolites associated with VAT/SAT and ectopic fat; linear regression adjusted for ethnicity identified clinical and anthropometric correlates for each fat depot. RESULTS: PLS identified 56, 64 and 31 metabolites which jointly predicted pancreatic fat (R2Y = 0.81, Q2 = 0.69), liver fat (RY2 = 0.8, Q2 = 0.66) and VAT/SAT ((R2Y = 0.7, Q2 = 0.62)) respectively. Among the PLS-identified metabolites, none of them remained significantly associated with pancreatic fat after adjusting for all covariates. Dihydrosphingomyelin (dhSM(d36:0)), 3 phosphatidylethanolamines, 5 diacylglycerols (DG) and 40 triacylglycerols (TG) were associated with liver fat independent of covariates. Three DGs and 12 TGs were associated with VAT/SAT independent of covariates. Notably, comparison with clinical correlates showed better predictivity of ectopic fat by these PLS-identified plasma metabolite markers. CONCLUSIONS: Untargeted metabolomics identified candidate markers of visceral and ectopic fat that improved fat level prediction over clinical markers. Several plasma metabolites were associated with level of liver fat and VAT/SAT ratio independent of age, total and visceral adiposity, whereas pancreatic fat deposition was only associated with increased sulfolithocholic acid independent of adiposity-related parameters, but not age.


Subject(s)
Biomarkers , Intra-Abdominal Fat , Metabolome/physiology , Metabolomics/methods , Adult , Aged , Biomarkers/blood , Biomarkers/metabolism , Female , Humans , Intra-Abdominal Fat/diagnostic imaging , Intra-Abdominal Fat/metabolism , Least-Squares Analysis , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging , Middle Aged , Pancreas/diagnostic imaging , Pancreas/metabolism , Young Adult
11.
J Nutr ; 151(10): 2932-2941, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34255069

ABSTRACT

BACKGROUND: l-Tryptophan reduces energy intake in healthy men. The underlying mechanisms, including appetite, plasma cholecystokinin (CCK), tryptophan (Trp), and the ratio of Trp to large neutral amino acids (Trp:LNAAs ratio), and whether responses differ in lean and obese individuals, are uncertain. OBJECTIVES: We evaluated the effects of intragastric Trp on energy intake (primary outcome) and their potential mechanisms, pre- and postmeal, in lean men and those with obesity. METHODS: Twelve lean men [mean ± SD age: 30 ± 3 y; BMI (in kg/m2): 23 ± 1] and 13 men with obesity (mean ± SD age: 31 ± 3 y; BMI: 33 ± 1) received, on 3 separate occasions, in double-blind, randomized order, 3 g ("Trp-3") or 1.5 g ("Trp-1.5") Trp, or control ("C"), intragastrically, 30 min before a buffet-meal. Energy intake from the buffet-meal, hunger, fullness, and plasma CCK and amino acid concentrations were measured in response to Trp alone and for 2 h postmeal. Data were analyzed using maximum likelihood mixed-effects models, with treatment, group, and treatment-by-group interaction as fixed effects. RESULTS: Trp alone increased plasma CCK, Trp, and the Trp:LNAAs ratio (all P < 0.001), with no difference between groups. Trp suppressed energy intake (P < 0.001), with no difference between groups (lean, C: 1085 ± 102 kcal, Trp-1.5: 1009 ± 92 kcal, Trp-3: 868 ± 104 kcal; obese, C: 1249 ± 98 kcal, Trp-1.5: 1217 ± 90 kcal, Trp-3: 1012 ± 100 kcal). Postmeal, fullness was greater after Trp-3 than after C and Trp-1.5 (all P < 0.05), and in men with obesity than in lean men (P < 0.05). Plasma Trp and the Trp:LNAAs ratio were greater after Trp-3 and Trp-1.5 than after C (all P < 0.001), and tended to be less in men with obesity than in the lean (P = 0.07) (Trp:LNAAs ratio: lean, C: 1.5 ± 0.2, Trp-1.5: 6.9 ± 0.7, Trp-3: 10.7 ± 1.4; obese, C: 1.4 ± 0.1, Trp-1.5: 4.6 ± 0.7, Trp-3: 7.8 ± 1.3). There were inverse correlations of energy intake with plasma Trp and the Trp:LNAAs ratio in both groups (lean, both r = -0.50, P < 0.01; obese, both r = -0.40, P < 0.05). CONCLUSIONS: Intragastric Trp has potent energy intake-suppressant effects, in both lean men and those with obesity, apparently related to the Trp:LNAAs ratio.


Subject(s)
Appetite , Tryptophan , Adult , Cholecystokinin , Double-Blind Method , Energy Intake , Humans , Male , Obesity
12.
Eur J Nutr ; 60(1): 179-192, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32246262

ABSTRACT

BACKGROUND: Biomarkers of meat intake hold promise in clarifying the health effects of meat consumption, yet the differentiation between red and white meat remains a challenge. We measure meat intake objectively in a free-living population by applying a newly developed, three-step strategy for biomarker-based assessment of dietary intakes aimed to indicate if (1) any meat was consumed, (2) what type it was and (3) the quantity consumed. METHODS: Twenty-four hour urine samples collected in a four-way crossover RCT and in a cross-sectional analysis of a longitudinal lifestyle intervention (the PREVIEW Study) were analyzed by untargeted LC-MS metabolomics. In the RCT, healthy volunteers consumed three test meals (beef, pork and chicken) and a control; in PREVIEW, overweight participants followed a diet with high or moderate protein levels. PLS-DA modeling of all possible combinations between six previously reported, partially validated, meat biomarkers was used to classify meat intake using samples from the RCT to predict consumption in PREVIEW. RESULTS: Anserine best separated omnivores from vegetarians (AUROC 0.94-0.97), while the anserine to carnosine ratio best distinguished the consumption of red from white meat (AUROC 0.94). Carnosine showed a trend for dose-response between non-consumers, low consumers and high consumers for all meat categories, while in combination with other biomarkers the difference was significant. CONCLUSION: It is possible to evaluate red meat intake by using combinations of existing biomarkers of white and general meat intake. Our results are novel and can be applied to assess qualitatively recent meat intake in nutritional studies. Further work to improve quantitation by biomarkers is needed.


Subject(s)
Anserine/analysis , Carnosine/analysis , Diet , Red Meat , Animals , Cattle , Cross-Sectional Studies , Humans , Overweight , Pork Meat , Poultry
13.
Diabetologia ; 63(2): 313-323, 2020 02.
Article in English | MEDLINE | ID: mdl-31732790

ABSTRACT

AIMS/HYPOTHESIS: Progressive decline in functional beta cell mass is central to the development of type 2 diabetes. Elevated serum levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT) are associated with beta cell failure in type 2 diabetes and eNAMPT immuno-neutralisation improves glucose tolerance in mouse models of diabetes. Despite this, the effects of eNAMPT on functional beta cell mass are poorly elucidated, with some studies having separately reported beta cell-protective effects of eNAMPT. eNAMPT exists in structurally and functionally distinct monomeric and dimeric forms. Dimerisation is essential for the NAD-biosynthetic capacity of NAMPT. Monomeric eNAMPT does not possess NAD-biosynthetic capacity and may exert distinct NAD-independent effects. This study aimed to fully characterise the structure-functional effects of eNAMPT on pancreatic beta cell functional mass and to relate these to beta cell failure in type 2 diabetes. METHODS: CD-1 mice and serum from obese humans who were without diabetes, with impaired fasting glucose (IFG) or with type 2 diabetes (from the Body Fat, Surgery and Hormone [BodyFatS&H] study) or with or at risk of developing type 2 diabetes (from the VaSera trial) were used in this study. We generated recombinant wild-type and monomeric eNAMPT to explore the effects of eNAMPT on functional beta cell mass in isolated mouse and human islets. Beta cell function was determined by static and dynamic insulin secretion and intracellular calcium microfluorimetry. NAD-biosynthetic capacity of eNAMPT was assessed by colorimetric and fluorescent assays and by native mass spectrometry. Islet cell number was determined by immunohistochemical staining for insulin, glucagon and somatostatin, with islet apoptosis determined by caspase 3/7 activity. Markers of inflammation and beta cell identity were determined by quantitative reverse transcription PCR. Total, monomeric and dimeric eNAMPT and nicotinamide mononucleotide (NMN) were evaluated by ELISA, western blot and fluorometric assay using serum from non-diabetic, glucose intolerant and type 2 diabetic individuals. RESULTS: eNAMPT exerts bimodal and concentration- and structure-functional-dependent effects on beta cell functional mass. At low physiological concentrations (~1 ng/ml), as seen in serum from humans without diabetes, eNAMPT enhances beta cell function through NAD-dependent mechanisms, consistent with eNAMPT being present as a dimer. However, as eNAMPT concentrations rise to ~5 ng/ml, as in type 2 diabetes, eNAMPT begins to adopt a monomeric form and mediates beta cell dysfunction, reduced beta cell identity and number, increased alpha cell number and increased apoptosis, through NAD-independent proinflammatory mechanisms. CONCLUSIONS/INTERPRETATION: We have characterised a novel mechanism of beta cell dysfunction in type 2 diabetes. At low physiological levels, eNAMPT exists in dimer form and maintains beta cell function and identity through NAD-dependent mechanisms. However, as eNAMPT levels rise, as in type 2 diabetes, structure-functional changes occur resulting in marked elevation of monomeric eNAMPT, which induces a diabetic phenotype in pancreatic islets. Strategies to selectively target monomeric eNAMPT could represent promising therapeutic strategies for the treatment of type 2 diabetes.


Subject(s)
Cytokines/blood , Cytokines/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Nicotinamide Phosphoribosyltransferase/blood , Nicotinamide Phosphoribosyltransferase/metabolism , Animals , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Glucagon/blood , Glucagon/metabolism , Humans , Immunoblotting , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Male , Mass Spectrometry , Mice , Reverse Transcriptase Polymerase Chain Reaction , Somatostatin/blood , Somatostatin/metabolism , Structure-Activity Relationship
14.
Int J Behav Nutr Phys Act ; 17(1): 29, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32131847

ABSTRACT

BACKGROUND: Physical activity, sedentary time and sleep have been shown to be associated with cardio-metabolic health. However, these associations are typically studied in isolation or without accounting for the effect of all movement behaviours and the constrained nature of data that comprise a finite whole such as a 24 h day. The aim of this study was to examine the associations between the composition of daily movement behaviours (including sleep, sedentary time (ST), light intensity physical activity (LIPA) and moderate-to-vigorous activity (MVPA)) and cardio-metabolic health, in a cross-sectional analysis of adults with pre-diabetes. Further, we quantified the predicted differences following reallocation of time between behaviours. METHODS: Accelerometers were used to quantify daily movement behaviours in 1462 adults from eight countries with a body mass index (BMI) ≥25 kg·m- 2, impaired fasting glucose (IFG; 5.6-6.9 mmol·l- 1) and/or impaired glucose tolerance (IGT; 7.8-11.0 mmol•l- 1 2 h following oral glucose tolerance test, OGTT). Compositional isotemporal substitution was used to estimate the association of reallocating time between behaviours. RESULTS: Replacing MVPA with any other behaviour around the mean composition was associated with a poorer cardio-metabolic risk profile. Conversely, when MVPA was increased, the relationships with cardiometabolic risk markers was favourable but with smaller predicted changes than when MVPA was replaced. Further, substituting ST with LIPA predicted improvements in cardio-metabolic risk markers, most notably insulin and HOMA-IR. CONCLUSIONS: This is the first study to use compositional analysis of the 24 h movement composition in adults with overweight/obesity and pre-diabetes. These findings build on previous literature that suggest replacing ST with LIPA may produce metabolic benefits that contribute to the prevention and management of type 2 diabetes. Furthermore, the asymmetry in the predicted change in risk markers following the reallocation of time to/from MVPA highlights the importance of maintaining existing levels of MVPA. TRIAL REGISTRATION: ClinicalTrials.gov (NCT01777893).


Subject(s)
Exercise/physiology , Obesity , Prediabetic State , Sedentary Behavior , Blood Glucose/analysis , Body Mass Index , Cross-Sectional Studies , Humans , Obesity/complications , Obesity/epidemiology , Overweight/complications , Overweight/epidemiology , Prediabetic State/complications , Prediabetic State/epidemiology , Risk Factors
15.
Public Health Nurs ; 37(3): 393-404, 2020 05.
Article in English | MEDLINE | ID: mdl-32160348

ABSTRACT

INTRODUCTION: Major risk factors for type 2 diabetes are lifestyle choices such as lack of physical activity (PA) and poor diet. Many individuals either do not take part or struggle to complete interventions supporting lifestyle changes. Demographic and theory-based sociocognitive factors associated with PREVIEW intervention attrition after successful weight loss were examined. METHODS: Participants (1,856) who started the weight maintenance phase after completion of low-energy diet were retrospectively divided into three clusters depending on the point they left the trial. Discriminant analysis examined which demographic and theory-based sociocognitive variables were associated with cluster membership. RESULTS: Most of the participants were women and well-educated. Two discriminant functions were calculated (χ2 (24) = 247.0, p ≥ .05, d = 0.78). The demographic variables, such as age and ethnicity, and the social cognitive variable outcome expectancies on the other side were associated with cluster membership. Older age, Caucasian ethnicity, and fewer expected disadvantages of PA were associated with high success. DISCUSSION: The discriminant model gave insight into some factors associated with early attrition. For practitioners planning interventions it underlines the necessity to take extra attention to younger participants and to those being afraid that being physically active causes unpleasant ramifications.


Subject(s)
Life Style , Prediabetic State/therapy , Treatment Adherence and Compliance/psychology , Weight Loss , Adult , Exercise/psychology , Female , Humans , Male , Middle Aged , Prediabetic State/psychology , Retrospective Studies , Treatment Adherence and Compliance/statistics & numerical data
16.
Am J Physiol Cell Physiol ; 316(2): C293-C298, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30601673

ABSTRACT

Loss of muscle size and strength with aging is a major cause of morbidity. Although muscle size and strength are measured by imaging or fiber cross-sectional staining and exercise testing, respectively, the development of circulatory biomarkers for these phenotypes would greatly simplify identification of muscle function deficits. MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene translation and, thereby, contribute to muscle phenotype. To assess circulatory miRNAs (c-miRNAs) applicability as potential biomarkers of muscular phenotypes, fasting plasma and muscle samples were obtained from 50 middle-aged healthy men [mean (SD); age: 48.8 yr (SD 4.5); BMI: 26.6 kg/m2 (SD 3.3)]. RT-PCR of 38 miRNAs with known regulatory function within skeletal muscle identified four c-miRNAs (miR-221, miR-451a, miR-361, and miR-146a) related to either total body lean mass, leg lean mass, and 50% thigh cross-sectional area (CSA), but not strength. There was no relationship with the expression of these miRNAs in muscle. Six miRNAs within muscle were correlated with whole body lean mass, leg lean mass, and isometric knee extension torque (miR-133a and miR-146a), and 50% thigh CSA (miR-486, miR-208b, miR-133b, and miR-208a). Only miR-23b demonstrated a relationship between tissue and circulatory expression; however, only 10% of the variance was explained. miR-146a in both plasma and muscle was related to phenotype; however, no relationship between plasma and muscle expression was evident. A different subset of miRNAs correlated to muscle phenotype in muscle compared with plasma samples, suggesting that c-miRNA biomarkers of muscle phenotype are likely unrelated to muscle expression in healthy individuals.


Subject(s)
Circulating MicroRNA/blood , Exercise/physiology , Muscle Strength/physiology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Absorptiometry, Photon/methods , Adult , Biomarkers/blood , Humans , Male , Middle Aged
17.
J Nutr ; 149(9): 1511-1522, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31152658

ABSTRACT

BACKGROUND: Resistance exercise and dietary protein stimulate muscle protein synthesis (MPS). The rate at which proteins are digested and absorbed into circulation alters peak plasma amino acid concentrations and may modulate postexercise MPS. A novel mineral modified milk protein concentrate (mMPC), with identical amino acid composition to standard milk protein concentrate (MPC), was formulated to induce rapid aminoacidemia. OBJECTIVES: The aim of this study was to determine whether rapid aminoacidemia and greater peak essential amino acid (EAA) concentrations induced by mMPC would stimulate greater postresistance exercise MPS, anabolic signaling, and ribosome biogenesis compared to standard dairy proteins, which induce a small but sustained plasma essential aminoacidemia. METHODS: Thirty healthy young men (22.5 ± 3.0 y; BMI 23.8 ± 2.7 kg/m2) received primed constant infusions of l-[ring-13C6]-phenylalanine and completed 3 sets of leg presses and leg extensions at 80% of 1 repetition. Afterwards, participants were randomly assigned in a double-blind fashion to consume 25 g mMPC, MPC, or calcium caseinate (CAS). Vastus lateralis biopsies were collected at rest, and 2 and 4 h post exercise. RESULTS: Plasma EAA concentrations, including leucine, were 19.2-26.6% greater in the mMPC group 45-90 min post ingestion than in MPC and CAS groups (P < 0.001). Myofibrillar fractional synthetic rate from baseline to 4 h was increased by 82.6 ± 64.8%, 137.8 ± 72.1%, and 140.6 ± 52.4% in the MPC, mMPC, and CAS groups, respectively, with no difference between groups (P = 0.548). Phosphorylation of anabolic signaling targets (P70S6KThr389, P70S6KThr421/Ser424, RPS6Ser235/236, RPS6Ser240/244, P90RSKSer380, 4EBP1) were elevated by <3-fold at both 2 and 4 h post exercise in all groups (P < 0.05). CONCLUSIONS: The amplitude of plasma leucine and EAA concentrations does not modulate the anabolic response to resistance exercise after ingestion of 25 g dairy protein in young men. This trial was registered at http://www.anzctr.org.au/ as ACTRN12617000393358.


Subject(s)
Amino Acids, Essential/blood , Exercise , Milk Proteins/administration & dosage , Adolescent , Adult , Double-Blind Method , Humans , Insulin/blood , Male , Muscle Proteins/biosynthesis , Resistance Training , Ribosomal Proteins/analysis , Young Adult
18.
Physiol Genomics ; 50(6): 416-424, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29602299

ABSTRACT

The loss of muscle size, strength, and quality with aging is a major determinant of morbidity and mortality in the elderly. The regulatory pathways that impact the muscle phenotype include the translational regulation maintained by microRNAs (miRNA). Yet the miRNAs that are expressed in human skeletal muscle and relationship to muscle size, strength, and quality are unknown. Using next-generation sequencing, we selected the 50 most abundantly expressed miRNAs and then analyzed them in vastus lateralis muscle, obtained by biopsy from middle-aged males ( n = 48; 50.0 ± 4.3 yr). Isokinetic strength testing and midthigh computed tomography was undertaken for muscle phenotype analysis. Muscle attenuation was measured by computerized tomography and is inversely proportional to myofiber lipid content. miR-486-5p accounted for 21% of total miR sequence reads, with miR-10b-5p, miR-133a-3p, and miR-22-3p accounting for a further 15, 12, and 10%, respectively. Isokinetic knee extension strength and muscle cross-sectional area were positively correlated with miR-100-5p, miR-99b-5p, and miR-191-5p expression. Muscle attenuation was negatively correlated to let-7f-5p, miR-30d-5p, and miR-125b-5p expression. In silico analysis implicates miRNAs related to strength and muscle size in the regulation of mammalian target of rapamycin, while miRNAs related to muscle attenuation may have potential roles regulating the transforming growth factor-ß/SMAD3 pathway.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , MicroRNAs/genetics , Muscle, Skeletal/metabolism , Gene Expression Regulation , Humans , Male , MicroRNAs/metabolism , Middle Aged , Muscle Strength/genetics , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Phenotype , Principal Component Analysis , Real-Time Polymerase Chain Reaction , Reproducibility of Results
19.
Biochem Biophys Res Commun ; 482(4): 625-631, 2017 Jan 22.
Article in English | MEDLINE | ID: mdl-27865831

ABSTRACT

Pancreatic islet ß-cells secrete the hormones insulin and amylin, and defective ß-cell function plays a central role in the pathogenesis of type-2 diabetes (T2D). Human amylin (hA, also termed hIAPP) misfolds and forms amyloid aggregates whereas orthologous mouse amylin does neither. Furthermore, hA elicits apoptosis in cultured ß-cells and ß-cell death in ex-vivo islets. In addition, hA-transgenic mice that selectively express hA in their ß-cells, manifest ß-cell apoptosis and progressive islet damage that leads to diabetes closely resembling that in patients with T2D. Aggregation of hA is thus linked to the causation of diabetes. We employed time-dependent thioflavin-T spectroscopy and ion-mobility mass spectrometry to screen potential suppressors of hA misfolding for anti-diabetic activity. We identified the dietary flavonol rutin as an inhibitor of hA-misfolding and measured its anti-diabetic efficacy in hA-transgenic mice. In vitro, rutin bound hA, suppressed misfolding, disaggregated oligomers and reverted hA-conformation towards the physiological. In hA-transgenic mice, measurements of glucose, fluid-intake, and body-weight showed that rutin-treatment slowed diabetes-progression by lowering of rates of elevation in blood glucose (P = 0.030), retarding deterioration from symptomatic diabetes to death (P = 0.014) and stabilizing body-weight (P < 0.0001). In conclusion, rutin treatment suppressed hA-aggregation in vitro and doubled the lifespan of diabetic mice (P = 0.011) by a median of 69 days compared with vehicle-treated control-diabetic hA-transgenic mice.


Subject(s)
Amyloid/metabolism , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Islet Amyloid Polypeptide/metabolism , Protein Folding/drug effects , Rutin/therapeutic use , Amyloid/genetics , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Hypoglycemic Agents/pharmacology , Islet Amyloid Polypeptide/genetics , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Male , Mice, Transgenic , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Proteostasis Deficiencies/drug therapy , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Rutin/pharmacology
20.
Diabetes Metab Res Rev ; 33(8)2017 11.
Article in English | MEDLINE | ID: mdl-28730683

ABSTRACT

Presence of fat in the pancreas increases the risk of metabolic co-morbidities. Detection and quantification of pancreatic fat is not a routine clinical practice, at least in part because of need to use expensive imaging techniques. We aimed to systematically review common markers of pancreatic fat in blood and to investigate differences in these markers associated with fatty pancreas. The search was conducted in 3 databases (EMBASE, Scopus, and MEDLINE). Studies in humans were eligible for inclusion if they reported on biological markers and percentage of pancreatic fat or fatty pancreas prevalence. Data were pooled for correlation and effect size meta-analysis. A total of 17 studies including 11 967 individuals were eligible for meta-analysis. Markers of lipid metabolism, including circulating triglycerides (r = 0.38 [95% confidence interval (CI) 0.31, 0.46]) and high-density lipoprotein cholesterol (r = -0.33 [95% CI -0.35, -0.31]), and markers of glucose metabolism, including glycated haemoglobin (r = 0.39 [95% CI 0.30, 0.48], insulin (r = 0.38 [95% CI 0.33, 0.43]), and homeostasis model assessment-insulin resistance (r = 0.37 [95% CI 0.30, 0.44], yielded the best correlations with percentage of pancreatic fat. Further, effect size analysis showed large and medium effects for the above markers of lipid and glucose metabolism. Circulating levels of triglycerides and glycated haemoglobin appear to be the best currently available markers of pancreatic fat. The approach of non-invasive and accurate detection of pancreatic fat by blood analysis should be further explored in the future, by investigating other potential biological markers of pancreatic fat.


Subject(s)
Adipose Tissue/metabolism , Pancreas/metabolism , Biomarkers/blood , Cholesterol, HDL/blood , Humans , Insulin Resistance/physiology , Lipid Metabolism/physiology , Lipids/blood , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL