Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Cell ; 174(1): 72-87.e32, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29861175

ABSTRACT

Recent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation. Acidification of several human and murine cell lines, as well as primary murine T cells, suppresses mechanistic target of rapamycin complex 1 (mTORC1) signaling, a key regulator of translation in response to metabolic status. We find that acid drives peripheral redistribution of normally perinuclear lysosomes away from perinuclear RHEB, thereby inhibiting the activity of lysosome-bound mTOR. Restoring mTORC1 signaling and the translation it governs rescues clock oscillation. Our findings thus reveal a model in which acid produced during the cellular metabolic response to hypoxia suppresses the circadian clock through diminished translation of clock constituents.


Subject(s)
Cell Hypoxia , Circadian Clocks , Mechanistic Target of Rapamycin Complex 1/metabolism , Adaptor Proteins, Signal Transducing , Amino Acids, Dicarboxylic/pharmacology , Animals , CLOCK Proteins/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cells, Cultured , Circadian Clocks/drug effects , Culture Media/chemistry , Eukaryotic Initiation Factors , Hydrogen-Ion Concentration , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mice , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Transcriptome/drug effects , Tuberous Sclerosis Complex 2 Protein/deficiency , Tuberous Sclerosis Complex 2 Protein/genetics
2.
Mol Psychiatry ; 28(5): 1857-1867, 2023 05.
Article in English | MEDLINE | ID: mdl-36765131

ABSTRACT

Antipsychotic (AP) drugs are efficacious treatments for various psychiatric disorders, but excessive weight gain and subsequent development of metabolic disease remain serious side effects of their use. Increased food intake leads to AP-induced weight gain, but the underlying molecular mechanisms remain unknown. In previous studies, we identified the neuropeptide Agrp and the transcription factor nuclear receptor subfamily 5 group A member 2 (Nr5a2) as significantly upregulated genes in the hypothalamus following AP-induced hyperphagia. While Agrp is expressed specifically in the arcuate nucleus of the hypothalamus and plays a critical role in appetite stimulation, Nr5a2 is expressed in both the CNS and periphery, but its role in food intake behaviors remains unknown. In this study, we investigated the role of hypothalamic Nr5a2 in AP-induced hyperphagia and weight gain. In hypothalamic cell lines, olanzapine treatment resulted in a dose-dependent increase in gene expression of Nr5a2 and Agrp. In mice, the pharmacological inhibition of NR5A2 decreased olanzapine-induced hyperphagia and weight gain, while the knockdown of Nr5a2 in the arcuate nucleus partially reversed olanzapine-induced hyperphagia. Chromatin-immunoprecipitation studies showed for the first time that NR5A2 directly binds to the Agrp promoter region. Lastly, the analysis of single-cell RNA seq data confirms that Nr5a2 and Agrp are co-expressed in a subset of neurons in the arcuate nucleus. In summary, we identify Nr5a2 as a key mechanistic driver of AP-induced food intake. These findings can inform future clinical development of APs that do not activate hyperphagia and weight gain.


Subject(s)
Hyperphagia , Animals , Humans , Mice , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Agouti-Related Protein/pharmacology , Antipsychotic Agents/adverse effects , Eating , Hyperphagia/chemically induced , Hyperphagia/genetics , Hyperphagia/metabolism , Hypothalamus/metabolism , Olanzapine/adverse effects , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/pharmacology , Receptors, Cytoplasmic and Nuclear/therapeutic use , Weight Gain
3.
Proc Natl Acad Sci U S A ; 117(24): 13771-13782, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32487727

ABSTRACT

The nucleus accumbens (NAc), a central component of the midbrain dopamine reward circuit, exhibits disturbed circadian rhythms in the postmortem brains of depressed patients. We hypothesized that normal mood regulation requires proper circadian timing in the NAc, and that mood disorders are associated with dysfunctions of the NAc cellular circadian clock. In mice exhibiting stress-induced depression-like behavior (helplessness), we found altered circadian clock function and high nighttime expression of the core circadian clock component CRYPTOCHROME (CRY) in the NAc. In the NAc of helpless mice, we found that higher expression of CRY is associated with decreased activation of dopamine 1 receptor-expressing medium spiny neurons (D1R-MSNs). Furthermore, D1R-MSN-specific CRY-knockdown in the NAc reduced susceptibility to stress-induced helplessness and increased NAc neuronal activation at night. Finally, we show that CRY inhibits D1R-induced G protein activation, likely by interacting with the Gs protein. Altered circadian rhythms and CRY expression were also observed in human fibroblasts from major depressive disorder patients. Our data reveal a causal role for CRY in regulating the midbrain dopamine reward system, and provide a mechanistic link between the NAc circadian clock and vulnerability to depression.


Subject(s)
Circadian Clocks , Cryptochromes/metabolism , Depression/metabolism , Nucleus Accumbens/metabolism , Animals , Behavior, Animal , Depression/genetics , Depression/physiopathology , Depression/psychology , Dopamine/metabolism , Female , Helplessness, Learned , Humans , Male , Mice , Neurons/metabolism , Receptors, Dopamine/genetics , Receptors, Dopamine/metabolism
4.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835612

ABSTRACT

Previous work revealed an inverse correlation between tobacco smoking and Parkinson's disease (PD) that is associated with nicotine-induced neuroprotection of dopaminergic (DA) neurons against nigrostriatal damage in PD primates and rodent models. Nicotine, a neuroactive component of tobacco, can directly alter the activity of midbrain DA neurons and induce non-DA neurons in the substantia nigra (SN) to acquire a DA phenotype. Here, we investigated the recruitment mechanism of nigrostriatal GABAergic neurons to express DA phenotypes, such as transcription factor Nurr1 and DA-synthesizing enzyme tyrosine hydroxylase (TH), and the concomitant effects on motor function. Wild-type and α-syn-overexpressing (PD) mice treated with chronic nicotine were assessed by behavioral pattern monitor (BPM) and immunohistochemistry/in situ hybridization to measure behavior and the translational/transcriptional regulation of neurotransmitter phenotype following selective Nurr1 overexpression or DREADD-mediated chemogenetic activation. We found that nicotine treatment led to a transcriptional TH and translational Nurr1 upregulation within a pool of SN GABAergic neurons in wild-type animals. In PD mice, nicotine increased Nurr1 expression, reduced the number of α-syn-expressing neurons, and simultaneously rescued motor deficits. Hyperactivation of GABA neurons alone was sufficient to elicit de novo translational upregulation of Nurr1. Retrograde labeling revealed that a fraction of these GABAergic neurons projects to the dorsal striatum. Finally, concomitant depolarization and Nurr1 overexpression within GABA neurons were sufficient to mimic nicotine-mediated dopamine plasticity. Revealing the mechanism of nicotine-induced DA plasticity protecting SN neurons against nigrostriatal damage could contribute to developing new strategies for neurotransmitter replacement in PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Mice , Animals , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Dopamine/metabolism , Nicotine/pharmacology , Substantia Nigra/metabolism , Dopaminergic Neurons/metabolism , GABAergic Neurons/metabolism , Phenotype
5.
Bipolar Disord ; 24(3): 232-263, 2022 05.
Article in English | MEDLINE | ID: mdl-34850507

ABSTRACT

AIM: Symptoms of bipolar disorder (BD) include changes in mood, activity, energy, sleep, and appetite. Since many of these processes are regulated by circadian function, circadian rhythm disturbance has been examined as a biological feature underlying BD. The International Society for Bipolar Disorders Chronobiology Task Force (CTF) was commissioned to review evidence for neurobiological and behavioral mechanisms pertinent to BD. METHOD: Drawing upon expertise in animal models, biomarkers, physiology, and behavior, CTF analyzed the relevant cross-disciplinary literature to precisely frame the discussion around circadian rhythm disruption in BD, highlight key findings, and for the first time integrate findings across levels of analysis to develop an internally consistent, coherent theoretical framework. RESULTS: Evidence from multiple sources implicates the circadian system in mood regulation, with corresponding associations with BD diagnoses and mood-related traits reported across genetic, cellular, physiological, and behavioral domains. However, circadian disruption does not appear to be specific to BD and is present across a variety of high-risk, prodromal, and syndromic psychiatric disorders. Substantial variability and ambiguity among the definitions, concepts and assumptions underlying the research have limited replication and the emergence of consensus findings. CONCLUSIONS: Future research in circadian rhythms and its role in BD is warranted. Well-powered studies that carefully define associations between BD-related and chronobiologically-related constructs, and integrate across levels of analysis will be most illuminating.


Subject(s)
Bipolar Disorder , Chronobiology Disorders , Animals , Behavioral Research , Bipolar Disorder/diagnosis , Chronobiology Disorders/genetics , Circadian Rhythm/genetics , Humans , Sleep/physiology
6.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800828

ABSTRACT

Hypercholesterolemia is one of the major causes of cardiovascular disease, the risk of which is further increased if other forms of dyslipidemia occur. Current therapeutic strategies include changes in lifestyle coupled with drug administration. Statins represent the most common therapeutic approach, but they may be insufficient due to the onset of resistance mechanisms and side effects. Consequently, patients with mild hypercholesterolemia prefer the use of food supplements since these are perceived to be safer. Here, we investigate the phytochemical profile and cholesterol-lowering potential of Protium heptaphyllum gum resin extract (PHE). Chemical characterization via HPLC-APCI-HRMS2 and GC-FID/MS identified 13 compounds mainly belonging to ursane, oleanane, and tirucallane groups. Studies on human hepatocytes have revealed how PHE is able to reduce cholesterol production and regulate the expression of proteins involved in its metabolism. (HMGCR, PCSK9, LDLR, FXR, IDOL, and PPAR). Moreover, measuring the inhibitory activity of PHE against HMGR, moderate inhibition was recorded. Finally, molecular docking studies identified acidic tetra- and pentacyclic triterpenoids as the main compounds responsible for this action. In conclusion, our study demonstrates how PHE may be a useful alternative to contrast hypercholesterolemia, highlighting its potential as a sustainable multitarget natural extract for the nutraceutical industry that is rapidly gaining acceptance as a source of health-promoting compounds.


Subject(s)
Anticholesteremic Agents/pharmacology , Hydrogen/chemistry , Plant Gums/chemistry , Resins, Plant/chemistry , Triterpenes/pharmacology , Anticholesteremic Agents/isolation & purification , Catalytic Domain/drug effects , Cholesterol/metabolism , Chromatography, High Pressure Liquid , Dietary Supplements , Drug Evaluation, Preclinical , Flame Ionization , Gas Chromatography-Mass Spectrometry , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lovastatin/pharmacology , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Triterpenes/isolation & purification
7.
Molecules ; 25(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512771

ABSTRACT

Annona cherimola (Cherimoya) and Annona atemoya (Atemoya) are tropical plants known for their edible fruit. Scientific data suggest that their leaves, used in traditional medicine in the form of teas or infusions without evidence of toxicity, contain several bioactive compounds. However, only Annona muricata among all the Annona species is currently used in the nutraceutical field, and its dried leaves are marketed for tea preparation. In this work, we explored the nutraceutical potential of Atemoya and Cherimoya leaves, by evaluating their chemical profile and functional properties. Phytochemical analyses showed large amounts of phenolic compounds, in particular proanthocyanidins, and identified 18 compounds, either flavonoids or alkaloids. Concerning biological activity, we found antioxidative properties correlated with polyphenols, and antiproliferative activity against HeLa and HepG2 cell lines correlated with alkaloids. The obtained results demonstrate the potential use of Annona cherimola leaves for the preparation of dietary supplements aimed to promote the physiological redox balance. Moreover, the varietal comparison suggests that two commercial cultivars (Campas and White) and the local Torre 1, better suit this purpose. On the other hand, among the studied cultivars, Campas and Torre 1 are also the richest in alkaloids and, in consideration of the anti-proliferative properties of their extracts, dietary supplements based on these cultivars might also have chemo-preventive effects.


Subject(s)
Annona/chemistry , Antioxidants/pharmacology , Neoplasms/pathology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Polyphenols/pharmacology , Annona/classification , Apoptosis , Cell Proliferation , Humans , Neoplasms/drug therapy , Tumor Cells, Cultured
8.
Neural Plast ; 2018: 5147585, 2018.
Article in English | MEDLINE | ID: mdl-29681926

ABSTRACT

Seasonal changes in light exposure have profound effects on behavioral and physiological functions in many species, including effects on mood and cognitive function in humans. The mammalian brain's master circadian clock, the suprachiasmatic nucleus (SCN), transmits information about external light conditions to other brain regions, including some implicated in mood and cognition. Although the detailed mechanisms are not yet known, the SCN undergoes highly plastic changes at the cellular and network levels under different light conditions. We therefore propose that the SCN may be an essential mediator of the effects of seasonal changes of day length on mental health. In this review, we explore various forms of neuroplasticity that occur in the SCN and other brain regions to facilitate seasonal adaptation, particularly altered phase distribution of cellular circadian oscillators in the SCN and changes in hypothalamic neurotransmitter expression.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Neuronal Plasticity/physiology , Photoperiod , Suprachiasmatic Nucleus/physiology , Animals , Humans , Nerve Net/physiology , Seasons
9.
J Dairy Sci ; 99(8): 6046-6051, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27289154

ABSTRACT

Hyphenated gas chromatography-mass spectrometry (GC-MS) and multivariate data analysis techniques were used to uncover milk metabolite differences in different αS1-casein genotypes of goats. By a discriminant GC-MS metabolomics approach, we characterized milk polar metabolites of 28 goats. Animals were selected on the basis of their genotypes as 7 goats classified heterozygous for weak or null alleles, 5 for the genotype EE, 9 for the genotypes AE and BE, and finally 7 for the strong genotype AA. Low molecular weight polar metabolite profile was tightly related to the different goat genotypes, milk production, and protein levels. Results of multivariate statistical analysis of GC-MS data demonstrate that different heterozygous and homozygous genotypes expressed different metabolites such as citric and aconitic acid for the strong allele class with different sugars and polyols for the weak class.


Subject(s)
Caseins/genetics , Gas Chromatography-Mass Spectrometry , Goats/genetics , Metabolomics , Milk/chemistry , Alleles , Animals , Genotype , Polymorphism, Genetic/genetics
10.
Front Neurosci ; 18: 1418694, 2024.
Article in English | MEDLINE | ID: mdl-38952923

ABSTRACT

The advent of artificial lighting, particularly during the evening and night, has significantly altered the predictable daily light and dark cycles in recent times. Altered light environments disrupt the biological clock and negatively impact mood and cognition. Although adolescents commonly experience chronic changes in light/dark cycles, our understanding of how the adolescents' brain adapts to altered light environments remains limited. Here, we investigated the impact of chronic light cycle disruption (LCD) during adolescence, exposing adolescent mice to 19 h of light and 5 h of darkness for 5 days and 12 L:12D for 2 days per week (LCD group) for 4 weeks. We showed that LCD exposure did not affect circadian locomotor activity but impaired memory and increased avoidance response in adolescent mice. Clock gene expression and neuronal activity rhythms analysis revealed that LCD disrupted local molecular clock and neuronal activity in the dentate gyrus (DG) and in the medial amygdala (MeA) but not in the circadian pacemaker (SCN). In addition, we characterized the photoresponsiveness of the MeA and showed that somatostatin neurons are affected by acute and chronic aberrant light exposure during adolescence. Our research provides new evidence highlighting the potential consequences of altered light environments during pubertal development on neuronal physiology and behaviors.

11.
Front Mol Neurosci ; 16: 1188184, 2023.
Article in English | MEDLINE | ID: mdl-37441675

ABSTRACT

Circadian rhythms are self-sustained oscillations of biological systems that allow an organism to anticipate periodic changes in the environment and optimally align feeding, sleep, wakefulness, and the physiological and biochemical processes that support them within the 24 h cycle. These rhythms are generated at a cellular level by a set of genes, known as clock genes, which code for proteins that inhibit their own transcription in a negative feedback loop and can be perturbed by stress, a risk factor for the development of mood and anxiety disorders. A role for circadian clocks in mood and anxiety has been suggested for decades on the basis of clinical observations, and the dysregulation of circadian rhythms is a prominent clinical feature of stress-related disorders. Despite our understanding of central clock structure and function, the effect of circadian dysregulation in different neuronal subtypes in the suprachiasmatic nucleus (SCN), the master pacemaker region, as well as other brain systems regulating mood, including mesolimbic and limbic circuits, is just beginning to be elucidated. In the brain, circadian clocks regulate neuronal physiological functions, including neuronal activity, synaptic plasticity, protein expression, and neurotransmitter release which in turn affect mood-related behaviors via cell-type specific mechanisms. Both animal and human studies have revealed an association between circadian misalignment and mood disorders and suggest that internal temporal desynchrony might be part of the etiology of psychiatric disorders. To date, little work has been conducted associating mood-related phenotypes to cell-specific effects of the circadian clock disruptions. In this review, we discuss existing literature on how clock-driven changes in specific neuronal cell types might disrupt phase relationships among cellular communication, leading to neuronal circuit dysfunction and changes in mood-related behavior. In addition, we examine cell-type specific circuitry underlying mood dysfunction and discuss how this circuitry could affect circadian clock. We provide a focus for future research in this area and a perspective on chronotherapies for mood and anxiety disorders.

12.
Food Funct ; 14(9): 4163-4172, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37062967

ABSTRACT

A healthy vascular endothelium plays an essential role in modulating vascular tone by producing and releasing vasoactive factors such as nitric oxide (NO). Endothelial dysfunction (ED), the loss of the endothelium physiological functions, results in the inability to properly regulate vascular tone, leading to hypertension and other cardiovascular risk factors. Alongside NO, the gasotransmitter hydrogen sulfide (H2S) has emerged as a key molecule with vasodilatory and antioxidant activities. Since a reduction in H2S bioavailability is related to ED pathogenesis, natural H2S donors are very attractive. In particular, we focused on the sulfur-containing amino acid S-allyl cysteine (SAC), a bioactive metabolite, of which black garlic is particularly rich, with antioxidant activity and, among others, anti-diabetic and anti-hypertensive properties. In this study, we analyzed the protective effect of SAC against ED by evaluating reactive oxygen species level, H2S release, eNOS phosphorylation, and NO production (by fluorescence imaging and western blot analysis) in Bovine Aortic Endothelial cells (BAE-1). Furthermore, we chemically characterized a Black Garlic Extract (BGE) for its content in SAC and other sulfur-containing amino acids. BGE was used to carry out an analysis on H2S release on BAE-1 cells. Our results show that both SAC and BGE significantly increase H2S release. Moreover, SAC reduces ROS production and enhances eNOS phosphorylation and the consequent NO release in our cellular model. In this scenario, a natural extract enriched in SAC could represent a novel therapeutic approach to prevent the onset of ED-related diseases.


Subject(s)
Garlic , Hydrogen Sulfide , Animals , Cattle , Antioxidants/pharmacology , Antioxidants/metabolism , Sulfur Compounds/pharmacology , Garlic/chemistry , Endothelial Cells/metabolism , Hydrogen Sulfide/metabolism , Cysteine/pharmacology , Endothelium, Vascular/metabolism , Sulfur
13.
Sci Adv ; 8(35): eabn9867, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36054362

ABSTRACT

Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.

14.
Neuropharmacology ; 189: 108537, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33798546

ABSTRACT

Allosteric modulators of G protein coupled receptors (GPCRs), including GABABRs (GABABRs), are promising therapeutic candidates. While several positive allosteric modulators (PAM) of GABABRs have been characterized, only recently the first negative allosteric modulator (NAM) has been described. In the present study, we report the characterization of COR758, which acts as GABABR NAM in rat cortical membranes and CHO cells stably expressing GABABRs (CHO-GABAB). COR758 failed to displace the antagonist [3H]CGP54626 from the orthosteric binding site of GABABRs showing that it acts through an allosteric binding site. Docking studies revealed a possible new allosteric binding site for COR758 in the intrahelical pocket of the GABAB1 monomer. COR758 inhibited basal and GABABR-stimulated O-(3-[35Sthio)-triphosphate ([35S]GTPγS) binding in brain membranes and blocked the enhancement of GABABR-stimulated [35S]GTPγS binding by the PAM GS39783. Bioluminescent resonance energy transfer (BRET) measurements in CHO-GABAB cells showed that COR758 inhibited G protein activation by GABA and altered GABABR subunit rearrangements. Additionally, the compound altered GABABR-mediated signaling such as baclofen-induced inhibition of cAMP production in transfected HEK293 cells, agonist-induced Ca2+ mobilization as well as baclofen and the ago-PAM CGP7930 induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in CHO-GABAB cells. COR758 also prevented baclofen-induced outward currents recorded from rat dopamine neurons, substantiating its property as a NAM for GABABRs. Altogether, these data indicate that COR758 inhibits G protein signaling by GABABRs, likely by interacting with an allosteric binding-site. Therefore, COR758 might serve as a scaffold to develop additional NAMs for therapeutic intervention.


Subject(s)
GABA Modulators/chemistry , GABA Modulators/pharmacology , GABA-B Receptor Antagonists/chemistry , GABA-B Receptor Antagonists/pharmacology , Receptors, GABA-B/physiology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Bioluminescence Resonance Energy Transfer Techniques/methods , CHO Cells , Cricetulus , Dose-Response Relationship, Drug , GABA-B Receptor Agonists/chemistry , GABA-B Receptor Agonists/pharmacology , Humans , Male , Rats , Rats, Sprague-Dawley , gamma-Aminobutyric Acid/chemistry , gamma-Aminobutyric Acid/pharmacology
15.
CNS Drugs ; 33(10): 981-999, 2019 10.
Article in English | MEDLINE | ID: mdl-31625128

ABSTRACT

Bipolar disorder (BD) is a mood disorder with genetic and neurobiological underpinnings, characterized primarily by recurrent episodes of mania and depression, with notable disruptions in rhythmic behaviors such as sleep, energy, appetite and attention. The chronobiological links to BD are further supported by the effectiveness of various treatment modalities such as bright light, circadian phase advance, and mood-stabilizing drugs such as lithium that have effects on the circadian clock. Over the past 30 years, the neurobiology of the circadian clock has been exquisitely described and there now exists a detailed knowledge of key signaling pathways, neurotransmitters and signaling mechanisms that regulate various dimensions of circadian clock function. With this new wealth of information, it is becoming increasingly plausible that new drugs for BD could be made by targeting molecular elements of the circadian clock. However, circadian rhythms are multidimensional and complex, involving unique, time-dependent factors that are not typically considered in drug development. We review the organization of the circadian clock in the central nervous system and briefly summarize data implicating the circadian clock in BD. We then consider some of the unique aspects of the circadian clock as a drug target in BD, discuss key methodological considerations and evaluate some of the candidate clock pathways and systems that could serve as potential targets for novel mood stabilizers. We expect this work will serve as a roadmap to facilitate the development of compounds acting on the circadian clock for the treatment of BD.


Subject(s)
Bipolar Disorder/drug therapy , Circadian Clocks/drug effects , Affect/drug effects , Animals , Central Nervous System/drug effects , Central Nervous System Agents/therapeutic use , Humans , Signal Transduction/drug effects
16.
Neuropharmacology ; 133: 107-120, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29407764

ABSTRACT

Rimonabant is a potent and selective cannabinoid CB1 receptor antagonist widely used in animal and clinical studies. Besides its antagonistic properties, numerous studies have shown that, at micromolar concentrations rimonabant behaves as an inverse agonist at CB1 receptors. The mechanism underpinning this activity is unclear. Here we show that micromolar concentrations of rimonabant inhibited Gαi/o-type G proteins, resulting in a receptor-independent block of G protein signaling. Accordingly, rimonabant decreased basal and agonist stimulated [35S]GTPγS binding to cortical membranes of CB1- and GABAB-receptor KO mice and Chinese Hamster Ovary (CHO) cell membranes stably transfected with GABAB or D2 dopamine receptors. The structural analog of rimonabant, AM251, decreased basal and baclofen-stimulated GTPγS binding to rat cortical and CHO cell membranes expressing GABAB receptors. Rimonabant prevented G protein-mediated GABAB and D2 dopamine receptor signaling to adenylyl cyclase in Human Embryonic Kidney 293 cells and to G protein-coupled inwardly rectifying K+ channels (GIRK) in midbrain dopamine neurons of CB1 KO mice. Rimonabant suppressed GIRK gating induced by GTPγS in CHO cells transfected with GIRK, consistent with a receptor-independent action. Bioluminescent resonance energy transfer (BRET) measurements in living CHO cells showed that, in presence or absence of co-expressed GABAB receptors, rimonabant stabilized the heterotrimeric Gαi/o-protein complex and prevented conformational rearrangements induced by GABAB receptor activation. Rimonabant failed to inhibit Gαs-mediated signaling, supporting its specificity for Gαi/o-type G proteins. The inhibition of Gαi/o protein provides a new site of rimonabant action that may help to understand its pharmacological and toxicological effects occurring at high concentrations.


Subject(s)
Cannabinoid Receptor Antagonists/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Action Potentials/drug effects , Action Potentials/genetics , Animals , Brain/drug effects , Brain/metabolism , CHO Cells , Cricetulus , GABA-B Receptor Agonists/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacokinetics , HEK293 Cells , Humans , Mice , Mice, Knockout , Models, Biological , Protein Binding/drug effects , Rats , Receptor, Cannabinoid, CB1/genetics , Receptors, GABA-B/genetics , Receptors, GABA-B/metabolism , Rimonabant , Signal Transduction/drug effects
18.
Eur J Pharmacol ; 791: 115-123, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27578262

ABSTRACT

Positive allosteric modulators (PAMs) of the GABAB receptor have emerged as a novel approach to the pharmacological manipulation of the GABAB receptor, enhancing the effects of receptor agonists with few side effects. Here, we identified N-cyclohexyl-4-methoxy-6-(4-(trifluoromethyl)phenyl)pyrimidin-2-amine (SSD114) as a new compound with activity as a GABAB PAM in in vitro and in vivo assays. SSD114 potentiated GABA-stimulated [35S]GTPγS binding to native GABAB receptors, whereas it had no effect when used alone. Its effect on GTPγS stimulation was suppressed when GABA-induced activation was blocked with CGP54626, a competitive antagonist of the GABAB receptor. SSD114 failed to potentiate WIN55,212,2-, morphine- and quinpirole-induced [35S]GTPγS binding to cortical and striatal membranes, respectively, indicating that it is a selective GABAB PAM. Increasing SSD114 fixed concentrations induced a leftward shift of the GABA concentration-response curve, enhancing the potency of GABA rather than its efficacy. SSD114 concentration-response curves in the presence of fixed concentrations of GABA (1, 10, and 20µM) revealed a potentiating effect on GABA-stimulated binding of [35S]GTPγS to rat cortical membranes, with EC50 values in the low micromolar range. Bioluminescence resonance energy transfer (BRET) experiments in Chinese Hamster Ovary (CHO)-cells expressing GABAB receptors showed that SSD114 potentiates the GABA inhibition of adenylyl-cyclase mediated by GABAB receptors. Our compound is also effective in vivo potentiating baclofen-induced sedation/hypnosis in mice, with no effect when tested alone. These findings indicate that SSD114, a molecule with a different chemical structure compared to known GABAB PAMs, is a novel GABAB PAM with potential usefulness in the GABAB-receptor research field.


Subject(s)
Cyclohexylamines/pharmacology , Pyrimidines/pharmacology , Receptors, GABA-B/metabolism , Allosteric Regulation/drug effects , Animals , Baclofen/pharmacology , CHO Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Cerebral Cortex/cytology , Cricetinae , Cricetulus , Cyclohexylamines/metabolism , Male , Mice , Pyrimidines/metabolism , Rats , Receptors, GABA-B/chemistry , Reflex, Righting/drug effects , gamma-Aminobutyric Acid/metabolism
19.
Neuropharmacology ; 105: 630-638, 2016 06.
Article in English | MEDLINE | ID: mdl-26686391

ABSTRACT

In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 µM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.


Subject(s)
Adamantane/analogs & derivatives , Cannabinoid Receptor Agonists/pharmacology , Dopamine Agents/pharmacology , Indazoles/pharmacology , Indoles/pharmacology , Quinolines/pharmacology , Adamantane/pharmacology , Animals , Cannabinoid Receptor Antagonists/pharmacology , Central Nervous System Stimulants/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Male , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Naphthalenes/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Piperidines/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism
20.
J Med Chem ; 56(9): 3620-35, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23544432

ABSTRACT

Two recently reported hit compounds, COR627 and COR628, underpinned the development of a series of 2-(acylamino)thiophene derivatives. Some of these compounds displayed significant activity in vitro as positive allosteric modulators of the GABAB receptor by potentiating GTPγS stimulation induced by GABA at 2.5 and 25 µM while failing to exhibit intrinsic agonist activity. Compounds were also found to be effective in vivo, potentiating baclofen-induced sedation/hypnosis in DBA mice when administered either intraperitoneally or intragastrically. Although displaying a lower potency in vitro than the reference compound GS39783, the new compounds 6, 10, and 11 exhibited a higher efficacy in vivo: combination of these compounds with a per se nonsedative dose of baclofen resulted in shorter onset and longer duration of the loss of righting reflex in mice. Test compounds showed cytotoxic effects at concentrations comparable to or higher than those of GS39783 or BHF177.


Subject(s)
Drug Design , Receptors, GABA-B/chemistry , Receptors, GABA-B/metabolism , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Administration, Oral , Allosteric Regulation/drug effects , Animals , Baclofen/pharmacology , Chemistry Techniques, Synthetic , Drug Stability , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Immobility Response, Tonic/drug effects , Mice , Microsomes, Liver/metabolism , NIH 3T3 Cells , Pentobarbital/pharmacology , Rats , Thiophenes/chemistry , Thiophenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL