Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Clin Chem Lab Med ; 62(3): 442-452, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-37776061

ABSTRACT

OBJECTIVES: The aim of the study was to determine the diagnostic performance of novel automated red cell parameters for estimating bone marrow iron stores. METHODS: The study was a retrospective single-centre study based on data from an automated haematology analyser and results of bone marrow iron staining. Red cell parameters were measured on a Sysmex XN-series haematology analyser. Bone marrow iron stores were assessed semiquantitatively by cytochemical reaction according to Perls. RESULTS: The analysis included 429 bone marrow aspirate smears from 393 patients. Median age of patients was 67 years, 52 % of them were female. The most common indication for bone marrow examination was a plasma cell dyscrasia (n=104; 24 %). Median values of percentage of hypochromic and hyperchromic red blood cells (%HYPO-He, %HYPER-He), reticulocyte haemoglobin equivalent (RET-He) and microcytic red blood cells (MicroR) were statistically significantly different between cases with iron deplete and iron replete bone marrow. In a logistic regression model, ferritin was the best predictor of bone marrow iron stores (AUC=0.891), outperforming RET-He and %HYPER-He (AUC=0.736 and AUC=0.722, respectively). In a combined model, ferritin/MicroR index achieved the highest diagnostic accuracy (AUC=0.915), outperforming sTfR/log ferritin index (AUC=0.855). CONCLUSIONS: While single automated red cell parameters did not show improved diagnostic accuracy when compared to traditional iron biomarkers, a novel index ferritin/MicroR has the potential to outperform ferritin and sTfR/log ferritin index for predicting bone marrow iron stores. Further research is needed for interpretation and implementation of novel parameters and indices, especially in the context of unexplained anaemia and myelodysplastic syndromes.


Subject(s)
Anemia, Iron-Deficiency , Humans , Female , Aged , Male , Anemia, Iron-Deficiency/diagnosis , Bone Marrow , Retrospective Studies , Iron/metabolism , Ferritins , Hemoglobins/analysis
2.
J Lipid Res ; 63(7): 100238, 2022 07.
Article in English | MEDLINE | ID: mdl-35679904

ABSTRACT

The primary hepatic consequence of obesity is non-alcoholic fatty liver disease (NAFLD), affecting about 25% of the global adult population. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD characterized by liver lipid accumulation, inflammation, and hepatocyte ballooning, with a different degree of hepatic fibrosis. In the light of rapidly increasing prevalence of NAFLD and NASH, there is an urgent need for improved understanding of the molecular pathogenesis of these diseases. The aim of this study was to decipher the possible role of STE20-type kinase MAP4K4 in the regulation of hepatocellular lipotoxicity and susceptibility to NAFLD. We found that MAP4K4 mRNA expression in human liver biopsies was positively correlated with key hallmarks of NAFLD (i.e., liver steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis). We also found that the silencing of MAP4K4 suppressed lipid deposition in human hepatocytes by stimulating ß-oxidation and triacylglycerol secretion, while attenuating fatty acid influx and lipid synthesis. Furthermore, downregulation of MAP4K4 markedly reduced the glycolysis rate and lowered incidences of oxidative/endoplasmic reticulum stress. In parallel, we observed suppressed JNK and ERK and increased AKT phosphorylation in MAP4K4-deficient hepatocytes. Together, these results provide the first experimental evidence supporting the potential involvement of STE20-type kinase MAP4K4 as a component of the hepatocellular lipotoxic milieu promoting NAFLD susceptibility.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Hepatocytes/metabolism , Humans , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Protein Serine-Threonine Kinases , Triglycerides/metabolism
3.
Int J Mol Sci ; 23(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36077504

ABSTRACT

Ischemia reperfusion injury is common in transplantation. Previous studies have shown that cooling can protect against hypoxic injury. To date, the protective effects of hypothermia have been largely associated with metabolic suppression. Since kidney transplantation is one of the most common organ transplant surgeries, we used human-derived renal proximal tubular cells (HKC8 cell line) as a model of normal renal cells. We performed a temperature titration curve from 37 °C to 22 °C and evaluated cellular respiration and molecular mechanisms that can counteract the build-up of reducing equivalents in hypoxic conditions. We show that the protective effects of hypothermia are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component), with the highest overlap between activating and suppressing mechanisms emerging in the window of mild hypothermia (32 °C). Hypothermia decreased hypoxia-induced rise in the extracellular lactate:pyruvate ratio, increased ATP/ADP ratio and mitochondrial content, normalized lipid content, and improved the recovery of respiration after anoxia. Importantly, it was observed that in contrast to mild hypothermia, moderate and deep hypothermia interfere with HIF1 (hypoxia inducible factor 1)-dependent HRE (hypoxia response element) induction in hypoxia. This work also demonstrates that hypothermia alleviates reductive stress, a conceptually novel and largely overlooked phenomenon at the root of ischemia reperfusion injury.


Subject(s)
Hypothermia, Induced , Hypothermia , Reperfusion Injury , Cold Temperature , Humans , Hypoxia
4.
Reprod Fertil Dev ; 31(2): 306-314, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30092912

ABSTRACT

Selecting high-quality embryos for transfer has been a difficult task when producing bovine embryos invitro. The most used non-invasive method is based on visual observation. Molecular characterisation of embryo growth media has been proposed as a complementary method. In this study we demonstrate a culture medium sampling method for identifying potential embryonic viability markers to predict normal or abnormal embryonic development. During single embryo culture, 20µL culture media was removed at Days 2, 5 and 8 after fertilisation from the same droplet (60µL). In all, 58 samples were analysed using liquid chromatography-mass spectrometry. We demonstrate that it is possible to remove samples from the same culture medium droplets and not significantly affect blastocyst rate (25.2%). Changes in any single low molecular weight compound were not predictive enough. Combining multiple low molecular weight signals made it possible to predict Day 2 and 5 embryo development to the blastocyst stage with an accuracy of 64%. Elevated concentrations of lysophosphatidylethanolamines (m/z=453, 566, 588) in the culture media of Day 8 well-developing embryos were observed. Choline (104m/z) and citrate (215m/z) concentrations were increased in embryos in which development was retarded. Metabolic profiling provides possibilities to identify well-developing embryos before transfer, thus improving pregnancy rates and the number of calves born.


Subject(s)
Blastocyst/metabolism , Embryo Culture Techniques/veterinary , Metabolome , Animals , Cattle , Culture Media , Embryo Transfer/veterinary , Embryonic Development/physiology , Female , Mass Spectrometry , Metabolomics , Pregnancy
5.
J Exp Biol ; 216(Pt 14): 2713-21, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23580720

ABSTRACT

Oxidative stress (OS) is widely believed to be responsible for the generation of trade-offs in evolutionary ecology by means of constraining investment into a number of components of fitness. Yet, progress in understanding the true role of OS in ecology and evolution has remained elusive. Interpretation of current findings is particularly hampered by the scarcity of experiments demonstrating which of the many available parameters of oxidative status respond most sensitively to and are relevant for measuring OS. We addressed these questions in wild-caught captive greenfinches (Carduelis chloris) by experimental induction of OS by administration of the pro-oxidant compound paraquat with drinking water. Treatment induced 50% mortality, a significant drop in body mass and an increase in oxidative DNA damage and glutathione levels in erythrocytes among the survivors of the high paraquat (0.2 g l(-1) over 7 days) group. Samples taken 3 days after the end of paraquat treatment showed no effect on the peroxidation of lipids (plasma malondialdehyde), carbonylation of proteins (in erythrocytes), parameters of plasma antioxidant protection (total antioxidant capacity and oxygen radical absorbance), uric acid or carotenoids. Our findings of an increase in one marker of damage and one marker of protection from the multitude of measured variables indicate that detection of OS is difficult even under the most stringent experimental induction of oxidative insult. We hope that this study highlights the need for reconsideration of over-simplistic models of OS and draws attention to the limitations of detection of OS due to time-lagged and hormetic upregulation of protective mechanisms. This study also underpins the diagnostic value of measurement of oxidative damage to DNA bases and assessment of erythrocyte glutathione levels.


Subject(s)
Oxidative Stress/drug effects , Paraquat/toxicity , Passeriformes/physiology , Analysis of Variance , Animals , Body Weight/drug effects , Carotenoids/blood , Comet Assay , DNA Damage , Erythrocytes/drug effects , Estonia , Female , Glutathione/blood , Glutathione/metabolism , Lipid Peroxidation/drug effects , Models, Biological , Uric Acid/blood
6.
Free Radic Biol Med ; 208: 1-12, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37506952

ABSTRACT

Heritable renal cancer syndromes (RCS) are associated with numerous chromosomal alterations including inactivating mutations in von Hippel-Lindau (VHL) gene. Here we identify a novel aspect of the phenotype in VHL-deficient human renal cells. We call it reductive stress as it is characterised by increased NADH/NAD+ ratio that is associated with impaired cellular respiration, impaired CAC activity, upregulation of reductive carboxylation of glutamine and accumulation of lipid droplets in VHL-deficient cells. Reductive stress was mitigated by glucose depletion and supplementation with pyruvate or resazurin, a redox-reactive agent. This study demonstrates for the first time that reductive stress is a part of the phenotype associated with VHL-deficiency in renal cells and indicates that the reversal of reductive stress can augment respiratory activity and CAC activity, suggesting a strategy for altering the metabolic profile of VHL-deficient tumours.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Kidney Neoplasms/metabolism , Carcinoma, Renal Cell/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Glutamine/metabolism , Up-Regulation
7.
Hepatol Commun ; 7(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-36930872

ABSTRACT

BACKGROUND: NAFLD has become the leading cause of chronic liver disease worldwide afflicting about one quarter of the adult population. NASH is a severe subtype of NAFLD, which in addition to hepatic steatosis connotes liver inflammation and hepatocyte ballooning. In light of the exponentially increasing prevalence of NAFLD, it is imperative to gain a better understanding of its molecular pathogenesis. The aim of this study was to examine the potential role of STE20-type kinase TAOK1 -a hepatocellular lipid droplet-associated protein-in the regulation of liver lipotoxicity and NAFLD etiology. METHODS: The correlation between TAOK1 mRNA expression in liver biopsies and the severity of NAFLD was evaluated in a cohort of 62 participants. Immunofluorescence microscopy was applied to describe the subcellular localization of TAOK1 in human and mouse hepatocytes. Metabolic reprogramming and oxidative/endoplasmic reticulum stress were investigated in immortalized human hepatocytes, where TAOK1 was overexpressed or silenced by small interfering RNA, using functional assays, immunofluorescence microscopy, and colorimetric analysis. Migration, invasion, and epithelial-mesenchymal transition were examined in TAOK1-deficient human hepatoma-derived cells. Alterations in hepatocellular metabolic and pro-oncogenic signaling pathways were assessed by immunoblotting. RESULTS: We observed a positive correlation between the TAOK1 mRNA abundance in human liver biopsies and key hallmarks of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Furthermore, we found that TAOK1 protein fully colocalized with intracellular lipid droplets in human and mouse hepatocytes. The silencing of TAOK1 alleviated lipotoxicity in cultured human hepatocytes by accelerating lipid catabolism (mitochondrial ß-oxidation and triacylglycerol secretion), suppressing lipid anabolism (fatty acid influx and lipogenesis), and mitigating oxidative/endoplasmic reticulum stress, and the opposite changes were detected in TAOK1-overexpressing cells. We also found decreased proliferative, migratory, and invasive capacity, as well as lower epithelial-mesenchymal transition in TAOK1-deficient human hepatoma-derived cells. Mechanistic studies revealed that TAOK1 knockdown inhibited ERK and JNK activation and repressed acetyl-CoA carboxylase (ACC) protein abundance in human hepatocytes. CONCLUSIONS: Together, we provide the first experimental evidence supporting the role of hepatic lipid droplet-decorating kinase TAOK1 in NAFLD development through mediating fatty acid partitioning between anabolic and catabolic pathways, regulating oxidative/endoplasmic reticulum stress, and modulating metabolic and pro-oncogenic signaling.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Fatty Acids , Inflammation , Lipid Metabolism/genetics , Liver Neoplasms/genetics , Non-alcoholic Fatty Liver Disease/pathology , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/metabolism , Triglycerides/metabolism , Gene Silencing
8.
Commun Biol ; 5(1): 379, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440683

ABSTRACT

Recent studies highlight the importance of lipotoxic damage in aortic cells as the major pathogenetic contributor to atherosclerotic disease. Since the STE20-type kinase STK25 has been shown to exacerbate ectopic lipid storage and associated cell injury in several metabolic organs, we here investigate its role in the main cell types of vasculature. We depleted STK25 by small interfering RNA in human aortic endothelial and smooth muscle cells exposed to oleic acid and oxidized LDL. In both cell types, the silencing of STK25 reduces lipid accumulation and suppresses activation of inflammatory and fibrotic pathways as well as lowering oxidative and endoplasmic reticulum stress. Notably, in smooth muscle cells, STK25 inactivation hinders the shift from a contractile to a synthetic phenotype. Together, we provide several lines of evidence that antagonizing STK25 signaling in human aortic endothelial and smooth muscle cells is atheroprotective, highlighting this kinase as a new potential therapeutic target for atherosclerotic disease.


Subject(s)
Atherosclerosis , Intracellular Signaling Peptides and Proteins , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Lipid Metabolism/genetics , Lipids , Myocytes, Smooth Muscle/metabolism , Protein Serine-Threonine Kinases/genetics
9.
Mol Metab ; 54: 101353, 2021 12.
Article in English | MEDLINE | ID: mdl-34634521

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD), defined by excessive lipid storage in hepatocytes, has recently emerged as a leading global cause of chronic liver disease. The aim of this study was to examine the role of STE20-type protein kinase TAOK3, which has previously been shown to associate with hepatic lipid droplets, in the initiation and aggravation of human NAFLD. METHODS: The correlation between TAOK3 mRNA expression and the severity of NAFLD was investigated in liver biopsies from 62 individuals. In immortalized human hepatocytes, intracellular fat deposition, lipid metabolism, and oxidative and endoplasmic reticulum stress were analyzed when TAOK3 was overexpressed or knocked down by small interfering RNA. Subcellular localization of TAOK3 was characterized in human and mouse hepatocytes by immunofluorescence microscopy. RESULTS: We found that the TAOK3 transcript levels in human liver biopsies were positively correlated with the key lesions of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Overexpression of TAOK3 in cultured human hepatocytes exacerbated lipid storage by inhibiting ß-oxidation and triacylglycerol secretion while enhancing lipid synthesis. Conversely, silencing of TAOK3 attenuated lipid deposition in human hepatocytes by stimulating mitochondrial fatty acid oxidation and triacylglycerol efflux while suppressing lipogenesis. We also found aggravated or decreased oxidative/endoplasmic reticulum stress in human hepatocytes with increased or reduced TAOK3 levels, respectively. The subcellular localization of TAOK3 in human and mouse hepatocytes was confined to intracellular lipid droplets. CONCLUSIONS: This study provides the first evidence that hepatic lipid droplet-coating kinase TAOK3 is a critical regulatory node controlling liver lipotoxicity and susceptibility to NAFLD.


Subject(s)
Liver/metabolism , Protein Serine-Threonine Kinases/metabolism , Cells, Cultured , Female , Humans , Lipid Metabolism , Male , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Biomedicines ; 9(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34572334

ABSTRACT

In the large GWAS studies, NEGR1 gene has been one of the most significant gene loci for body mass phenotype. The purpose of the current study was to clarify the role of NEGR1 in the maintenance of systemic metabolism, including glucose homeostasis, by using both male and female Negr1-/- mice receiving a standard or high fat diet (HFD). We found that 6 weeks of HFD leads to higher levels of blood glucose in Negr1-/- mice. In the glucose tolerance test, HFD induced phenotype difference only in male mice; Negr1-/- male mice displayed altered glucose tolerance, accompanied with upregulation of circulatory branched-chain amino acids (BCAA). The general metabolomic profile indicates that Negr1-/- mice are biased towards glyconeogenesis, fatty acid synthesis, and higher protein catabolism, all of which are amplified by HFD. Negr1 deficiency appears to induce alterations in the efficiency of energy storage; reduced food intake could be an attempt to compensate for the metabolic challenge present in the Negr1-/- males, particularly during the HFD exposure. Our results suggest that the presence of functional Negr1 allows male mice to consume more HFD and prevents the development of glucose intolerance, liver steatosis, and excessive weight gain.

11.
JCI Insight ; 5(24)2020 12 17.
Article in English | MEDLINE | ID: mdl-33170807

ABSTRACT

Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase 25 (STK25) as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Furthermore, we find that STK25 silencing in human kidney cells protects against lipid deposition, as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.


Subject(s)
Diabetic Nephropathies/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Diabetes Mellitus/metabolism , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/prevention & control , Disease Models, Animal , Fatty Liver/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kidney/metabolism , Kidney/pathology , Lipid Metabolism/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protective Agents/metabolism , Protein Serine-Threonine Kinases/genetics
12.
Toxins (Basel) ; 11(2)2019 02 09.
Article in English | MEDLINE | ID: mdl-30744127

ABSTRACT

The potentially self-poisonous toxin-antitoxin modules are widespread in bacterial chromosomes, but despite extensive studies, their biological importance remains poorly understood. Here, we used whole-cell proteomics to study the cellular effects of the Pseudomonas putida toxin GraT that is known to inhibit growth and ribosome maturation in a cold-dependent manner when the graA antitoxin gene is deleted from the genome. Proteomic analysis of P. putida wild-type and ΔgraA strains at 30 °C and 25 °C, where the growth is differently affected by GraT, revealed two major responses to GraT at both temperatures. First, ribosome biogenesis factors, including the RNA helicase DeaD and RNase III, are upregulated in ΔgraA. This likely serves to alleviate the ribosome biogenesis defect of the ΔgraA strain. Secondly, proteome data indicated that GraT induces downregulation of central carbon metabolism, as suggested by the decreased levels of TCA cycle enzymes isocitrate dehydrogenase Idh, α-ketoglutarate dehydrogenase subunit SucA, and succinate-CoA ligase subunit SucD. Metabolomic analysis revealed remarkable GraT-dependent accumulation of oxaloacetate at 25 °C and a reduced amount of malate, another TCA intermediate. The accumulation of oxaloacetate is likely due to decreased flux through the TCA cycle but also indicates inhibition of anabolic pathways in GraT-affected bacteria. Thus, proteomic and metabolomic analysis of the ΔgraA strain revealed that GraT-mediated stress triggers several responses that reprogram the cell physiology to alleviate the GraT-caused damage.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Pseudomonas putida/metabolism , Antitoxins/genetics , Citric Acid Cycle , Metabolome , Proteome , Pseudomonas putida/growth & development , Ribosomal Proteins/metabolism
13.
Free Radic Biol Med ; 121: 157-168, 2018 06.
Article in English | MEDLINE | ID: mdl-29704622

ABSTRACT

Mild hypothermia (32 °C) is routinely used in medical practice to alleviate hypoxic ischemic damage, however, the mechanisms that underlie its protective effects remain uncertain. Using a systems approach based on genome-wide expression screens, reporter assays and biochemical studies, we find that cellular hypothermia response is associated with the augmentation of major stress-inducible transcription factors Nrf2 and HIF1Α affecting the antioxidant system and hypoxia response pathways, respectively. At the same time, NF-κB, a transcription factor involved in the control of immune and inflammatory responses, was not induced by hypothermia. Furthermore, mild hypothermia did not trigger unfolded protein response. Lower temperatures (27 °C and 22 °C) did not activate Nrf2 and HIF1A pathways as efficiently as mild hypothermia. Current findings are discussed in the context of the thermodynamic hypothesis of therapeutic hypothermia. We argue that the therapeutic effects are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component). We argue that systems coping with cellular stressors are plausible targets of therapeutic hypothermia and deserve more attention in clinical hypothermia research.


Subject(s)
Biomarkers/analysis , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Gene Expression Regulation , Hypothermia, Induced/methods , NF-E2-Related Factor 2/physiology , Stress, Physiological , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Female , Fibroblasts/cytology , Gene Expression Profiling , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Mice, Knockout
14.
Mol Med Rep ; 16(5): 7092-7097, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28901522

ABSTRACT

Wolfram syndrome 1 (WS) is a rare neurodegenerative disease that is caused by mutations in the Wolfram syndrome 1 (WFS1) gene, which encodes the endoplasmic reticulum (ER) glycoprotein wolframin. The pathophysiology of WS is ER stress, which is generally considered to induce oxidative stress. As WS has a well­defined monogenetic origin and a model for chronic ER stress, the present study aimed to characterize how glutathione (GSH), a major intracellular antioxidant, was related to the disease and its progression. The concentration of GSH and the activities of reduction/oxidation system enzymes GSH peroxidase and GSH reductase were measured in Wfs1­deficient mice. The GSH content was lower in most of the studied tissues, and the activities of antioxidative enzymes varied between the heart, kidneys and liver tissues. The results indicated that GSH may be needed for ER stress control; however, chronic ER stress from the genetic syndrome eventually depletes the cellular GSH pool and leads to increased oxidative stress.


Subject(s)
Glutathione/metabolism , Membrane Proteins/genetics , Wolfram Syndrome/pathology , Aging , Animals , Endoplasmic Reticulum Stress , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Kidney/enzymology , Liver/enzymology , Male , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/enzymology , Pancreas/enzymology , Wolfram Syndrome/genetics
15.
OMICS ; 21(12): 721-732, 2017 12.
Article in English | MEDLINE | ID: mdl-29257731

ABSTRACT

Wolfram syndrome 1 is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Mutations in the WFS1 gene encoding the wolframin glycoprotein can lead to endoplasmic reticulum stress and unfolded protein responses in cells, but the pathophysiology at whole organism level is poorly understood. In this study, several organs (heart, liver, kidneys, and pancreas) and bodily fluids (trunk blood and urine) of 2- and 6-month old Wfs1 knockout (KO), heterozygote (HZ), and wild-type (WT) mice were analyzed by untargeted and targeted metabolomics using liquid chromatography-mass spectrometry. The key findings were significant perturbations in the metabolism of pancreas and heart before the onset of related clinical signs such as glycosuria that precedes hyperglycemia and thus implies a kidney dysfunction before the onset of classical diabetic nephropathy. The glucose use and gluconeogenesis in KO mice are intensified in early stages, but later the energetic needs are mainly covered by lipolysis. Furthermore, in young mice liver and trunk blood hypouricemia, which in time turns to hyperuricemia, was detected. In summary, we show that the metabolism in Wfs1-deficient mice markedly differs from the metabolism of WT mice in many aspects and discuss the future biological and clinical relevance of these observations.


Subject(s)
Membrane Proteins/genetics , Wolfram Syndrome/genetics , Wolfram Syndrome/metabolism , Animals , Endoplasmic Reticulum Stress/genetics , Metabolomics/methods , Mice , Mice, Knockout
16.
PLoS One ; 10(11): e0142053, 2015.
Article in English | MEDLINE | ID: mdl-26536230

ABSTRACT

E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC) and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL) on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC) with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1) to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1's maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes.


Subject(s)
Bronchi/metabolism , Electronic Nicotine Delivery Systems/adverse effects , Epithelial Cells/metabolism , Metabolome , Smoke/analysis , Smoking/adverse effects , Bronchi/drug effects , Cells, Cultured , Epithelial Cells/drug effects , Humans , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL