Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Biol Chem ; 298(7): 102110, 2022 07.
Article in English | MEDLINE | ID: mdl-35688208

ABSTRACT

Neurosteroids, modulators of neuronal and glial cell functions, are synthesized in the nervous system from cholesterol. In peripheral steroidogenic tissues, cholesterol is converted to the major steroid precursor pregnenolone by the CYP11A1 enzyme. Although pregnenolone is one of the most abundant neurosteroids in the brain, expression of CYP11A1 is difficult to detect. We found that human glial cells produced pregnenolone, detectable by mass spectrometry and ELISA, despite the absence of observable immunoreactive CYP11A1 protein. Unlike testicular and adrenal cortical cells, pregnenolone production in glial cells was not inhibited by CYP11A1 inhibitors DL-aminoglutethimide and ketoconazole. Furthermore, addition of hydroxycholesterols increased pregnenolone synthesis, suggesting desmolase activity that was not blocked by DL-aminoglutethimide or ketoconazole. We explored three different possibilities for an alternative pathway for glial cell pregnenolone synthesis: (1) regulation by reactive oxygen species, (2) metabolism via a different CYP11A1 isoform, and (3) metabolism via another CYP450 enzyme. First, we found oxidants and antioxidants had no significant effects on pregnenolone synthesis, suggesting it is not regulated by reactive oxygen species. Second, overexpression of CYP11A1 isoform b did not alter synthesis, indicating use of another CYP11A1 isoform is unlikely. Finally, we show nitric oxide and iron chelators deferoxamine and deferiprone significantly inhibited pregnenolone production, indicating involvement of another CYP450 enzyme. Ultimately, knockdown of endoplasmic reticulum cofactor NADPH-cytochrome P450 reductase had no effect, while knockdown of mitochondrial CYP450 cofactor ferredoxin reductase inhibited pregnenolone production. These data suggest that pregnenolone is synthesized by a mitochondrial cytochrome P450 enzyme other than CYP11A1 in human glial cells.


Subject(s)
Neuroglia/metabolism , Neurosteroids , Pregnenolone/metabolism , Aminoglutethimide , Cholesterol/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Humans , Ketoconazole/pharmacology , Pregnenolone/biosynthesis , Reactive Oxygen Species
2.
Anal Bioanal Chem ; 415(18): 4557-4567, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37069445

ABSTRACT

Numerous studies have linked a wide range of diseases including respiratory illnesses to harmful particulate matter (PM) emissions indoors and outdoors, such as incense PM and industrial PM. Because of their ability to penetrate the lower respiratory tract and the circulatory system, fine particles with diameters of 2.5 µm or less (PM2.5) are believed to be more hazardous than larger PMs. Despite the enormous number of studies focusing on the intracellular processes associated with PM2.5 exposure, there have been limited reports studying the biophysical properties of cell membranes, such as nanoscale morphological changes induced by PM2.5. Our study assesses the membrane topographical and structural effects of PM2.5 from incense PM2.5 exposure in real time on A549 lung carcinoma epithelial cells and SH-SY5Y neuroblastoma cells that had been fixed to preclude adaptive cell responses. The size distribution and mechanical properties of the PM2.5 sample were characterized with atomic force microscopy (AFM). Nanoscale morphological monitoring of the cell membranes utilizing scanning ion conductance microscopy (SICM) indicated statistically significant increasing membrane roughness at A549 cells at half an hour of exposure and visible damage at 4 h of exposure. In contrast, no significant increase in roughness was observed on SH-SY5Y cells after half an hour of PM2.5 exposure, although continued exposure to PM2.5 for up to 4 h affected an expansion of lesions already present before exposure commenced. These findings suggest that A549 cell membranes are more susceptible to structural damage by PM2.5 compared to SH-SY5Y cell membranes, corroborating more enhanced susceptibility of airway epithelial cells to exposure to PM2.5 than neuronal cells.


Subject(s)
Air Pollutants , Neuroblastoma , Humans , Particulate Matter/toxicity , Air Pollutants/toxicity , Air Pollutants/analysis , Microscopy , Lung/chemistry , Cell Membrane/chemistry
3.
Mediators Inflamm ; 2017: 5186904, 2017.
Article in English | MEDLINE | ID: mdl-28839349

ABSTRACT

Profound loss of CD4+ T cells, progressive impairment of the immune system, inflammation, and sustained immune activation are the characteristics of human immunodeficiency virus-1 (HIV-1) infection. Innate immune responses respond immediately from the day of HIV infection, and a thorough understanding of the interaction between several innate immune cells and HIV-1 is essential to determine to what extent those cells play a crucial role in controlling HIV-1 in vivo. Defensins, divided into the three subfamilies α-, ß-, and θ-defensins based on structure and disulfide linkages, comprise a critical component of the innate immune response and exhibit anti-HIV-1 activities and immunomodulatory capabilities. In humans, only α- and ß-defensins are expressed in various tissues and have broad impacts on HIV-1 transmission, replication, and disease progression. θ-defensins have been identified as functional peptides in Old World monkeys, but not in humans. Instead, θ-defensins exist only as pseudogenes in humans, chimpanzees, and gorillas. The use of the synthetic θ-defensin peptide "retrocyclin" as an antiviral therapy was shown to be promising, and further research into the development of defensin-based HIV-1 therapeutics is needed. This review focuses on the role of defensins in HIV-1 pathogenesis and highlights future research efforts that warrant investigation.


Subject(s)
HIV Infections/metabolism , HIV Infections/pathology , Animals , Biomarkers/metabolism , C-Reactive Protein/metabolism , Defensins/metabolism , Female , Fibrinogen/metabolism , Humans , Male
4.
J Biol Chem ; 286(21): 18515-25, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21388956

ABSTRACT

Fibroblast growth factor receptor-3 (FGFR-3) expression in the developing intestine is restricted to the undifferentiated epithelial cells within the lower portion of the crypt. We previously showed that mice lacking functional FGFR-3 have a significant decrease in the number of Paneth cells in the small intestine. Here, we used Caco2 cells to investigate whether FGFR-3 signaling can directly modulate expression of Paneth cell differentiation markers through its effects on TCF4/ß-catenin or through other signaling pathways downstream of this receptor. Caco2 cells treated with FGFR-3 ligands or expressing FGFR-3(K650E), a constitutively active mutant, resulted in a significantly increased expression of genes characteristic of mature Paneth cells, including human α-defensins 5 and 6 (HD5 and HD6) and Paneth cell lysozyme, whereas enterocytic differentiation markers were reduced. Activation of FGFR-3 signaling sustained high levels of ß-catenin mRNA expression, leading to increased TCF4/ß-catenin-regulated transcriptional activity in Caco2 cells. Sustained activity of the TCF4/ß-catenin pathway was required for the induction of Paneth cell markers. Activation of the MAPK pathway by FGFR-3 is also required for the induction of Paneth cell markers in addition to and independent of the effect of FGFR-3 on TCF4/ß-catenin activity. These studies suggest that coordinate activation of multiple independent signaling pathways downstream of FGFR-3 is involved in regulation of Paneth cell differentiation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation/physiology , MAP Kinase Signaling System/physiology , Paneth Cells/metabolism , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Transcription Factors/metabolism , beta Catenin/metabolism , Animals , Antigens, Differentiation/biosynthesis , Antigens, Differentiation/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Caco-2 Cells , Cell Differentiation/physiology , Humans , Lysosomes/genetics , Lysosomes/metabolism , Mice , Mutation, Missense , Organ Specificity/physiology , Receptor, Fibroblast Growth Factor, Type 3/genetics , Transcription Factor 4 , Transcription Factors/genetics , alpha-Defensins/genetics , alpha-Defensins/metabolism , beta Catenin/genetics
5.
Infect Immun ; 80(1): 266-75, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22006567

ABSTRACT

Paneth cells residing at the base of the small intestinal crypts contribute to the mucosal intestinal first line defense by secreting granules filled with antimicrobial polypeptides including lysozyme. These cells derive from the columnar intestinal stem cell located at position 0 and the transit amplifying cell located at position +4 in the crypts. We have previously shown that Salmonella enterica serovar Typhimurium (ST), a leading cause of gastrointestinal infections in humans, effects an overall reduction of lysozyme in the small intestine. To extend this work, we examined small-intestinal tissue sections at various time points after ST infection to quantify and localize expression of lysozyme and assess Paneth cell abundance, apoptosis, and the expression of Paneth cell differentiation markers. In response to infection with ST, the intestinal Paneth cell-specific lysozyme content, the number of lysozyme-positive Paneth cells, and the number of granules per Paneth cell decreased. However, this was accompanied by increases in the total number of Paneth cells and the frequency of mitotic events in crypts, by increased staining for the proliferation marker PCNA, primarily at the crypt side walls where the transit amplifying cell resides and not at the crypt base, and by apoptotic events in villi. Furthermore, we found a time-dependent upregulation of first ß-catenin, followed by EphB3, and lastly Sox9 in response to ST, which was not observed after infection with a Salmonella pathogenicity island 1 mutant deficient in type III secretion. Our data strongly suggest that, in response to ST infection, a Paneth cell differentiation program is initiated that leads to an expansion of the Paneth cell population and that the transit amplifying cell is likely the main progenitor responder. Infection-induced expansion of the Paneth cell population may represent an acute intestinal inflammatory response similar to neutrophilia in systemic infection.


Subject(s)
Paneth Cells/immunology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Animals , Cell Proliferation , Cytoplasm/chemistry , Cytoplasmic Granules , Female , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestine, Small/immunology , Intestine, Small/pathology , Mice , Muramidase/analysis , Salmonella Infections, Animal/pathology
6.
ACS Chem Neurosci ; 13(24): 3547-3553, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36455298

ABSTRACT

Parkinson's disease (PD) is the second-most prevalent neurodegenerative disorder in the U.S. α-Synuclein (α-Syn) preformed fibrils (PFFs) have been shown to propagate PD pathology in neuronal populations. However, little work has directly characterized the morphological changes on membranes associated with α-Syn PFFs at a cellular level. Scanning ion conductance microscopy (SICM) is a noninvasive in situ cell imaging technique and therefore uniquely advantageous to investigate PFF-induced membrane changes in neuroblastoma cells. The present work used SICM to monitor cytoplasmic membrane changes of SH-SY5Y neuroblastoma cells after incubation with varying concentrations of α-Syn PFFs. Cell membrane roughness significantly increased as the concentration of α-Syn PFFs increased. Noticeable protrusions that assumed a more crystalline appearance at higher α-Syn PFF concentrations were also observed. Cell viability was only slightly reduced, though statistically significantly, to about 80% but independent of the dose. These observations indicate that within the 48 h treatment period, PFFs continue to accumulate on the cell membranes, leading to membrane roughness increase without causing prominent cell death. Since PFFs did not induce major cell death, these data suggest that early interventions targeting fibrils before further aggregation may prevent the progression of neuron loss in Parkinson's disease.


Subject(s)
Neuroblastoma , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Microscopy , Neuroblastoma/pathology , Cell Membrane/metabolism
7.
Biochem Soc Trans ; 39(4): 1012-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21787339

ABSTRACT

PLUNC (palate, lung and nasal epithelium clone) protein is an abundant secretory product of epithelia throughout the mammalian conducting airways. Despite its homology with the innate immune defence molecules BPI (bactericidal/permeability-increasing protein) and LBP (lipopolysaccharide-binding protein), it has been difficult to define the functions of PLUNC. Based on its marked hydrophobicity and expression pattern, we hypothesized that PLUNC is an airway surfactant. We found that purified recombinant human PLUNC exhibited potent surfactant activity by several different measures, and experiments with airway epithelial cell lines and primary cultures indicate that native PLUNC makes a significant contribution to the overall surface tension in airway epithelial secretions. Interestingly, we also found that physiologically relevant concentrations of PLUNC-inhibited Pseudomonas aeruginosa biofilm formation in vitro without acting directly as a bactericide. This finding suggests that PLUNC protein may inhibit biofilm formation by airway pathogens, perhaps through its dispersant properties. Our data, along with reports from other groups on activity against some airway pathogens, expand on an emerging picture of PLUNC as a multifunctional protein, which plays a novel role in airway defences at the air/liquid interface.


Subject(s)
Glycoproteins/metabolism , Phosphoproteins/metabolism , Pulmonary Surfactants/metabolism , Respiratory System/metabolism , Animals , Bacterial Infections/immunology , Biofilms , Humans , Hydrophobic and Hydrophilic Interactions , Immunity, Innate
8.
Toxins (Basel) ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: mdl-34679019

ABSTRACT

Alpha toxin (Hla) is a major virulence factor of Staphylococcus aureus that targets platelets but clinical data on Hla pathogenesis in bacteremia (SAB) is limited. We examined the link between in vitro Hla activity and outcome. Study isolates obtained from 100 patients with SAB (50 survivors; 50 non-survivors) were assessed for in vitro Hla production by Western immunoblotting in a subset of isolates and Hla activity by hemolysis assay in all isolates. Relevant demographics, laboratory and clinical data were extracted from patients' medical records to correlate Hla activity of the infecting isolates with outcome. Hla production strongly correlated with hemolytic activity (rs = 0.93) in vitro. A trend towards higher hemolytic activity was observed for MRSA compared to MSSA and with high-risk source infection. Significantly higher hemolytic activity was noted for MRSA strains isolated from patients who developed thrombocytopenia (median 52.48 vs. 16.55 HU/mL in normal platelet count, p = 0.012) and from non survivors (median 30.96 vs. 14.87 HU/mL in survivors, p = 0.014) but hemolytic activity of MSSA strains did not differ between patient groups. In vitro Hla activity of MRSA strains obtained from patients with bacteremia is significantly associated with increased risk for thrombocytopenia and death which supports future studies to evaluate feasibility of bedside phenotyping and therapeutic targeting.


Subject(s)
Bacteremia/mortality , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Staphylococcal Infections/mortality , Thrombocytopenia/etiology , Adult , Aged , Bacterial Toxins/blood , Female , Hemolysin Proteins/blood , Humans , Male , Middle Aged , Retrospective Studies , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus
9.
Antibiotics (Basel) ; 10(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34827217

ABSTRACT

The biofilm production of Pseudomonas aeruginosa (PA) is central to establishing chronic infection in the airways in cystic fibrosis. Epithelial cells secrete an array of innate immune factors, including antimicrobial proteins and lipids, such as human beta defensin 2 (HBD2) and cholesteryl lineolate (CL), respectively, to combat colonization by pathogens. We have recently shown that HBD2 inhibits biofilm production by PA, possibly linked to interference with the transport of biofilm precursors. Considering that both HBD2 and CL are increased in airway fluids during infection, we hypothesized that CL synergizes with HBD2 in biofilm inhibition. CL was formulated in phospholipid-based liposomes (CL-PL). As measured by atomic force microscopy of single bacteria, CL-PL alone and in combination with HBD2 significantly increased bacterial surface roughness. Additionally, extracellular structures emanated from untreated bacterial cells, but not from cells treated with CL-PL and HBD2 alone and in combination. Crystal violet staining of the biofilm revealed that CL-PL combined with HBD2 effected a significant decrease of biofilm mass and increased the number of larger biofilm particles consistent with altered cohesion of formed biofilms. These data suggest that CL and HBD2 affect PA biofilm formation at the single cell and community-wide level and that the community-wide effects of CL are enhanced by HBD2. This research may inform future novel treatments for recalcitrant infections in the airways of CF patients.

10.
Cells ; 10(4)2021 04 04.
Article in English | MEDLINE | ID: mdl-33916615

ABSTRACT

Transforming growth factor-ß signaling (TGF-ß) maintains a balanced physiological function including cell growth, differentiation, and proliferation and regulation of immune system by modulating either SMAD2/3 and SMAD7 (SMAD-dependent) or SMAD-independent signaling pathways under normal conditions. Increased production of TGF-ß promotes immunosuppression in Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection. However, the cellular source and downstream events of increased TGF-ß production that attributes to its pathological manifestations remain unknown. Here, we have shown increased production of TGF-ß in a majority of intestinal CD3-CD20-CD68+ cells from acute and chronically SIV infected rhesus macaques, which negatively correlated with the frequency of jejunum CD4+ T cells. No significant changes in intestinal TGF-ß receptor II expression were observed but increased production of the pSMAD2/3 protein and SMAD3 gene expression in jejunum tissues that were accompanied by a downregulation of SMAD7 protein and gene expression. Enhanced TGF-ß production by intestinal CD3-CD20-CD68+ cells and increased TGF-ß/SMAD-dependent signaling might be due to a disruption of a negative feedback loop mediated by SMAD7. This suggests that SIV infection impacts the SMAD-dependent signaling pathway of TGF-ß and provides a potential framework for further study to understand the role of viral factor(s) in modulating TGF-ß production and downregulating SMAD7 expression in SIV. Regulation of mucosal TGF-ß expression by therapeutic TGF-ß blockers may help to create effective antiviral mucosal immune responses.


Subject(s)
Intestines/virology , Signal Transduction , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Animals , Disease Progression , Down-Regulation , Feedback, Physiological , Gene Expression Regulation , Intestines/pathology , Macaca mulatta , Models, Biological , Phosphorylation , Receptor, Transforming Growth Factor-beta Type II/metabolism , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/genetics , Up-Regulation , Viral Load
11.
Immunohorizons ; 5(6): 448-465, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34398803

ABSTRACT

Identifying the "essential" components of an undergraduate immunology lecture course can be daunting because of the varying postgraduate pathways students take. The American Association of Immunologists Education Committee commissioned an Ad Hoc Committee, representing undergraduate, graduate, and medical institutions as well as the biotechnology community, to develop core curricular recommendations for teaching immunology to undergraduates. In a reiterative process involving the American Association of Immunologists teaching community, 14 key topics were identified and expanded to include foundational concepts, subtopics and examples, and advanced subtopics, providing a flexible list for curriculum development and avenues for higher-level learning. Recommendations for inclusive and antiracist teaching that outline opportunities to meet the needs of diverse student populations were also developed. The consensus recommendations can be used to accommodate various course settings and will bridge undergraduate and graduate teaching and prepare diverse students for subsequent careers in the biomedical field.


Subject(s)
Allergy and Immunology/education , Curriculum/standards , Societies, Medical/standards , Allergy and Immunology/organization & administration , Allergy and Immunology/standards , Humans , Students , Teaching/standards , United States
12.
Front Immunol ; 12: 769990, 2021.
Article in English | MEDLINE | ID: mdl-34887863

ABSTRACT

Epithelial cell injury and impaired epithelial regeneration are considered key features in HIV pathogenesis and contribute to HIV-induced generalized immune activation. Understanding the molecular mechanisms underlying the disrupted epithelial regeneration might provide an alternative approach for the treatment of HIV-mediated enteropathy and immune activation. We have observed a significant increased presence of α defensin5+ (HD5) Paneth cells and proliferating Ki67+ epithelial cells as well as decreased expression of E-cadherin expression in epithelial cells during SIV infection. SIV infection did not significantly influence the frequency of LGR5+ stem cells, but the frequency of HD5+ cells was significantly higher compared to uninfected controls in jejunum. Our global transcriptomics analysis of enteroids provided novel information about highly significant changes in several important pathways like metabolic, TCA cycle, and oxidative phosphorylation, where the majority of the differentially expressed genes were downregulated in enteroids grown from chronically SIV-infected macaques compared to the SIV-uninfected controls. Despite the lack of significant reduction in LGR5+ stem cell population, the dysregulation of several intestinal stem cell niche factors including Notch, mTOR, AMPK and Wnt pathways as well as persistence of inflammatory cytokines and chemokines and loss of epithelial barrier function in enteroids further supports that SIV infection impacts on epithelial cell proliferation and intestinal homeostasis.


Subject(s)
Cellular Reprogramming/genetics , Epithelial Cells/metabolism , Intestine, Small/metabolism , Macaca mulatta/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Stem Cells/metabolism , Animals , Epithelial Cells/virology , Female , Gene Expression Profiling/methods , Gene Ontology , Host-Pathogen Interactions , Intestine, Small/virology , Macaca mulatta/metabolism , Macaca mulatta/virology , Male , Organoids/metabolism , Organoids/virology , RNA-Seq/methods , Signal Transduction/genetics , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Stem Cells/virology , Viral Load
13.
Viruses ; 13(7)2021 06 26.
Article in English | MEDLINE | ID: mdl-34206990

ABSTRACT

Innate immunity during acute infection plays a critical role in the disease severity of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), and is likely to contribute to COVID-19 disease outcomes. Defensins are highly abundant innate immune factors in neutrophils and epithelial cells, including intestinal Paneth cells, and exhibit antimicrobial and immune-modulatory activities. In this study, we investigated the effects of human α- and ß-defensins and RC101, a θ-defensin analog, on SARS-CoV-2 infection. We found that human neutrophil peptides (HNPs) 1-3, human defensin (HD) 5 and RC101 exhibited potent antiviral activity against pseudotyped viruses expressing SARS-CoV-2 spike proteins. HNP4 and HD6 had weak anti-SARS-CoV-2 activity, whereas human ß-defensins (HBD2, HBD5 and HBD6) had no effect. HNP1, HD5 and RC101 also inhibited infection by replication-competent SARS-CoV-2 viruses and SARS-CoV-2 variants. Pretreatment of cells with HNP1, HD5 or RC101 provided some protection against viral infection. These defensins did not have an effect when provided post-infection, indicating their effect was directed towards viral entry. Indeed, HNP1 inhibited viral fusion but not the binding of the spike receptor-binding domain to hACE2. The anti-SARS-CoV-2 effect of defensins was influenced by the structure of the peptides, as linear unstructured forms of HNP1 and HD5 lost their antiviral function. Pro-HD5, the precursor of HD5, did not block infection by SARS-CoV-2. High virus titers overcame the effect of low levels of HNP1, indicating that defensins act on the virion. HNP1, HD5 and RC101 also blocked viral infection of intestinal and lung epithelial cells. The protective effects of defensins reported here suggest that they may be useful additives to the antivirus arsenal and should be thoroughly studied.


Subject(s)
Defensins/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , A549 Cells , Caco-2 Cells , Defensins/classification , Epithelial Cells/virology , HEK293 Cells , HeLa Cells , Humans , SARS-CoV-2/physiology
14.
J Immunol ; 181(6): 4177-87, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18768875

ABSTRACT

Mucosal surfaces provide first-line defense against microbial invasion through their complex secretions. The antimicrobial activities of proteins in these secretions have been well delineated, but the contributions of lipids to mucosal defense have not been defined. We found that normal human nasal fluid contains all major lipid classes (in micrograms per milliliter), as well as lipoproteins and apolipoprotein A-I. The predominant less polar lipids were myristic, palmitic, palmitoleic, stearic, oleic, and linoleic acid, cholesterol, and cholesteryl palmitate, cholesteryl linoleate, and cholesteryl arachidonate. Normal human bronchioepithelial cell secretions exhibited a similar lipid composition. Removal of less-polar lipids significantly decreased the inherent antibacterial activity of nasal fluid against Pseudomonas aeruginosa, which was in part restored after replenishing the lipids. Furthermore, lipids extracted from nasal fluid exerted direct antibacterial activity in synergism with the antimicrobial human neutrophil peptide HNP-2 and liposomal formulations of cholesteryl linoleate and cholesteryl arachidonate were active against P. aeruginosa at physiological concentrations as found in nasal fluid and exerted inhibitory activity against other Gram-negative and Gram-positive bacteria. These data suggest that host-derived lipids contribute to mucosal defense. The emerging concept of host-derived antimicrobial lipids unveils novel roads to a better understanding of the immunology of infectious diseases.


Subject(s)
Anti-Bacterial Agents/immunology , Arachidonic Acids/physiology , Cholesterol Esters/metabolism , Nasal Mucosa/immunology , Nasal Mucosa/microbiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Arachidonic Acids/chemistry , Arachidonic Acids/deficiency , Cells, Cultured , Cholesterol Esters/chemistry , Cholesterol Esters/pharmacology , Enterobacter cloacae/growth & development , Enterobacter cloacae/immunology , Enterococcus faecalis/growth & development , Enterococcus faecalis/immunology , Humans , Immunity, Innate , Liposomes/immunology , Liposomes/metabolism , Nasal Mucosa/chemistry , Nasal Mucosa/metabolism , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/immunology , Staphylococcus aureus/growth & development , Staphylococcus aureus/immunology
15.
Anal Bioanal Chem ; 397(6): 2367-74, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20490467

ABSTRACT

Cholesteryl esters have antimicrobial activity and likely contribute to the innate immunity system. Improved separation techniques are needed to characterize these compounds. In this study, optimization of the reversed-phase high-performance liquid chromatography separation of six analyte standards (four cholesteryl esters plus cholesterol and tri-palmitin) was accomplished by modeling with an artificial neural network-genetic algorithm (ANN-GA) approach. A fractional factorial design was employed to examine the significance of four experimental factors: organic component in the mobile phase (ethanol and methanol), column temperature, and flow rate. Three separation parameters were then merged into geometric means using Derringer's desirability function and used as input sources for model training and testing. The use of genetic operators proved valuable for the determination of an effective neural network structure. Implementation of the optimized method resulted in complete separation of all six analytes, including the resolution of two previously co-eluting peaks. Model validation was performed with experimental responses in good agreement with model-predicted responses. Improved separation was also realized in a complex biological fluid, human milk. Thus, the first known use of ANN-GA modeling for improving the chromatographic separation of cholesteryl esters in biological fluids is presented and will likely prove valuable for future investigators involved in studying complex biological samples.


Subject(s)
Cholesterol Esters/isolation & purification , Chromatography, High Pressure Liquid/methods , Neural Networks, Computer , Humans , Immunity, Innate , Milk, Human/chemistry , Models, Chemical
16.
Biochem J ; 419(1): 193-200, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19105793

ABSTRACT

Antimicrobial polypeptides, including lysozymes, have membrane perturbing activity and are well-documented effector molecules of innate immunity. In cystic fibrosis, a hereditary disease with frequent lung infection with Pseudomonas aeruginosa, the non-esterified fatty acid DA (docosahexaenoic acid), but not OA (oleic acid), is decreased, and DA supplementation has been shown to improve the clinical condition in these patients. We hypothesized that DA may, either alone or in conjunction with lysozyme, exert antibacterial action against Ps. aeruginosa. We found that DA and lysozyme synergistically inhibit the metabolic activity of Ps. aeruginosa, in contrast with OA. Electron microscopy and equilibrium dialysis suggest that DA accumulates in the bacterial membrane in the presence of lysozyme. Surface plasmon resonance with live bacteria and differential scanning calorimetry studies with bacterial model membranes reveal that, initially, DA facilitates lysozyme incorporation into the membrane, which in turn allows influx of more DA, leading to bacterial cell death. The present study elucidates a molecular basis for the synergistic action of non-esterified fatty acids and antimicrobial polypeptides, which may be dysfunctional in cystic fibrosis.


Subject(s)
Docosahexaenoic Acids/pharmacology , Muramidase/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/ultrastructure , Calorimetry, Differential Scanning , Cell Membrane/drug effects , Cell Membrane/metabolism , Drug Synergism , Humans , Microscopy, Electron, Transmission , Surface Plasmon Resonance
17.
Front Immunol ; 11: 805, 2020.
Article in English | MEDLINE | ID: mdl-32457749

ABSTRACT

Biofilm production is a key virulence factor that facilitates bacterial colonization on host surfaces and is regulated by complex pathways, including quorum sensing, that also control pigment production, among others. To limit colonization, epithelial cells, as part of the first line of defense, utilize a variety of antimicrobial peptides (AMPs) including defensins. Pore formation is the best investigated mechanism for the bactericidal activity of AMPs. Considering the induction of human beta-defensin 2 (HBD2) secretion to the epithelial surface in response to bacteria and the importance of biofilm in microbial infection, we hypothesized that HBD2 has biofilm inhibitory activity. We assessed the viability and biofilm formation of a pyorubin-producing Pseudomonas aeruginosa strain in the presence and absence of HBD2 in comparison to the highly bactericidal HBD3. At nanomolar concentrations, HBD2 - independent of its chiral state - significantly reduced biofilm formation but not metabolic activity, unlike HBD3, which reduced biofilm and metabolic activity to the same degree. A similar discrepancy between biofilm inhibition and maintenance of metabolic activity was also observed in HBD2 treated Acinetobacter baumannii, another Gram-negative bacterium. There was no evidence for HBD2 interference with the regulation of biofilm production. The expression of biofilm-related genes and the extracellular accumulation of pyorubin pigment, another quorum sensing controlled product, did not differ significantly between HBD2 treated and control bacteria, and in silico modeling did not support direct binding of HBD2 to quorum sensing molecules. However, alterations in the outer membrane protein profile accompanied by surface topology changes, documented by atomic force microscopy, was observed after HBD2 treatment. This suggests that HBD2 induces structural changes that interfere with the transport of biofilm precursors into the extracellular space. Taken together, these data support a novel mechanism of biofilm inhibition by nanomolar concentrations of HBD2 that is independent of biofilm regulatory pathways.


Subject(s)
Biofilms/drug effects , Metabolic Networks and Pathways/drug effects , Microbial Viability/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , beta-Defensins/pharmacology , Cells, Cultured , Humans , Microscopy, Atomic Force , Organic Chemicals/metabolism , Quorum Sensing , Signal Transduction
19.
PLoS One ; 12(11): e0187721, 2017.
Article in English | MEDLINE | ID: mdl-29107946

ABSTRACT

The regulatory networks governing morphogenesis of a pleomorphic fungus, Candida albicans are extremely complex and remain to be completely elucidated. This study investigated the function of C. albicans yeast casein kinase 2 (CaYck2p). The yck2Δ/yck2Δ strain displayed constitutive pseudohyphae in both yeast and hyphal growth conditions, and formed enhanced biofilm under non-biofilm inducing condition. This finding was further supported by gene expression analysis of the yck2Δ/yck2Δ strain which showed significant upregulation of UME6, a key transcriptional regulator of hyphal transition and biofilm formation, and cell wall protein genes ALS3, HWP1, and SUN41, all of which are associated with morphogenesis and biofilm architecture. The yck2Δ/yck2Δ strain was hypersensitive to cell wall damaging agents and had increased compensatory chitin deposition in the cell wall accompanied by an upregulation of the expression of the chitin synthase genes, CHS2, CHS3, and CHS8. Absence of CaYck2p also affected fungal-host interaction; the yck2Δ/yck2Δ strain had significantly reduced ability to damage host cells. However, the yck2Δ/yck2Δ strain had wild-type susceptibility to cyclosporine and FK506, suggesting that CaYck2p functions independently from the Ca+/calcineurin pathway. Thus, in C. albicans, Yck2p is a multifunctional kinase that governs morphogenesis, biofilm formation, cell wall integrity, and host cell interactions.


Subject(s)
Biofilms/growth & development , Candida albicans/enzymology , Casein Kinase II/metabolism , Cell Wall , Candida albicans/growth & development , Chitin/biosynthesis , Real-Time Polymerase Chain Reaction
20.
BMC Res Notes ; 9: 337, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27391402

ABSTRACT

BACKGROUND: Healthcare associated infections (HAI) with multidrug-resistant (MDR) bacteria continue to be a global threat, highlighting an urgent need for novel antibiotics. In this study, we assessed the potential of free fatty acids and cholesteryl esters that form part of the innate host defense as novel antibacterial agents for use against MDR bacteria. METHODS: Liposomes of six different phospholipid mixtures were employed as carrier for six different fatty acids and four different cholesteryl esters. Using a modified MIC assay based on DNA quantification with the fluoroprobe Syto9, formulations were tested against Gram-positive and Gram-negative bacteria implicated in HAI. Formulations with MIC values in the low µg/mL range were further subjected to determination of minimal bactericidal activity, hemolysis assay with sheep erythrocytes, and cytotoxicity testing with the human liver cell line HepG2. The potential for synergistic activity with a standard antibiotic was also probed. RESULTS: Palmitic acid and stearic acid prepared in carrier 4 (PA4 and SA4, respectively) were identified as most active lipids (MIC against MDR Staphylococcus epidermidis was 0.5 and 0.25 µg/mL, respectively; MIC against vancomycin resistant Enterococcus faecalis (VRE) was 2 and 0.5 µg/mL, respectively). Cholesteryl linoleate formulated with carrier 3 (CL3) exhibited activity against the S. epidermidis strain (MIC 1 µg/mL) and a Pseudomonas aeruginosa strain (MIC 8 µg/mL) and lowered the vancomycin MIC for VRE from 32-64 µg/mL to as low as 4 µg/mL. At 90 µg/mL PA4, SA4, and CL3 effected less than 5 % hemolysis over 3 h and PA4 and CL3 did not exhibit significant cytotoxic activity against HepG2 cells when applied at 100 µg/mL over 48 h. CONCLUSIONS: Our results showed that selected fatty acids and cholesteryl esters packaged with phospholipids exhibit antibacterial activity against Gram-positive and Gram-negative bacteria and may augment the activity of antibiotics. Bactericidal activity could be unlinked from hemolytic and cytotoxic activity and the type of phospholipid carrier greatly influenced the activity. Thus, fatty acids and cholesteryl esters packaged in liposomes may have potential as novel lipophilic antimicrobial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cholesterol Esters/pharmacology , Enterococcus faecalis/drug effects , Fatty Acids, Nonesterified/pharmacology , Liposomes/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus epidermidis/drug effects , Animals , Cross Infection/drug therapy , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Drug Combinations , Drug Compounding , Drug Resistance, Multiple, Bacterial , Drug Synergism , Enterococcus faecalis/genetics , Enterococcus faecalis/growth & development , Erythrocytes/drug effects , Fluorescent Dyes , Hemolysis/drug effects , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Organic Chemicals , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Sheep , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/growth & development , Vancomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL