Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Biomacromolecules ; 16(7): 1958-66, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26053219

ABSTRACT

The size, drug loading, drug release kinetics, localization, biodistribution, and stability of a given polymeric nanoparticle (NP) system depend on the composition of the NP core as well as its surface properties. In this study, novel, pH-responsive, and lipid-coated NPs, which expand in size from a diameter of approximately 100 to 1000 nm in the presence of a mildly acidic pH environment, are synthesized and characterized. Specifically, a combined miniemulsion and free-radical polymerization method is used to prepare the NPs in the presence of PEGylated lipids. These PEGylated-lipid expansile NPs (PEG-L-eNPs) combine the swelling behavior of the polymeric core of expansile NPs with the improved colloidal stability and surface functionality of PEGylated liposomes. The surface functionality of PEG-L-eNPs allows for the incorporation of folic acid (FA) and folate receptor-targeting. The resulting hybrid polymer/lipid nanocarriers, FA-PEG-L-eNPs, exhibit greater in vitro uptake and potency when loaded with paclitaxel compared to nontargeted PEG-L-eNPs.


Subject(s)
Antineoplastic Agents/chemical synthesis , Folic Acid/pharmacokinetics , Lipids/chemistry , Nanoparticles/chemistry , Paclitaxel/pharmacokinetics , Polyethylene Glycols/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Chemistry, Pharmaceutical , Drug Delivery Systems , Folic Acid/chemistry , HeLa Cells , Humans , Paclitaxel/chemistry , Particle Size , Surface Properties
2.
J Acoust Soc Am ; 138(6): 3994-4003, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26723353

ABSTRACT

Broadband attenuation of ultrasound measured at different excitation pressures being different raises a serious theoretical concern, because the underlying assumption of linear and independent propagation of different frequency components nominally requires attenuation to be independent of excitation. Here, this issue is investigated by examining ultrasound attenuation through a monodisperse lipid-coated microbubble suspension measured at four different acoustic excitation amplitudes. The attenuation data are used to determine interfacial rheological properties (surface tension, surface dilatational elasticity, and surface dilatational viscosity) of the encapsulation according to three different models. Although different models result in similar rheological properties, attenuation measured at different excitation levels (4-110 kPa) leads to different values for them; the dilatation elasticity (0.56 to 0.18 N/m) and viscosity (2.4 × 10(-8) to 1.52 × 10(-8) Ns/m) both decrease with increasing pressure. Numerically simulating the scattered response, nonlinear energy transfer between frequencies are shown to be negligible, thereby demonstrating the linearity in propagation and validating the attenuation analysis. There is a second concern to the characterization arising from shell properties being dependent on excitation amplitude, which is not a proper constitutive variable. It is resolved by arriving at a strain-dependent rheology for the encapsulation. The limitations of the underlying analysis are discussed.


Subject(s)
Lipids/chemistry , Microbubbles , Ultrasonic Waves , Ultrasonics/methods , Computer Simulation , Elasticity , Energy Transfer , Nonlinear Dynamics , Numerical Analysis, Computer-Assisted , Pressure , Rheology , Scattering, Radiation , Surface Properties , Viscosity
3.
Langmuir ; 30(46): 13765-70, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25340527

ABSTRACT

The ability of low boiling point liquid perfluorocarbons (PFCs) to undergo a phase change from a liquid to a gas upon ultrasound irradiation makes PFC-based emulsions promising vehicles for triggered delivery of payloads. However, loading hydrophilic agents into PFC-based emulsions is difficult due to their insolubility in PFC. Here, we address this challenge by taking advantage of microfluidic technologies to fabricate double emulsions consisting of large aqueous cores and a perfluorohexane (PFH) shell, thus yielding high loading capacities for hydrophilic agents. Using this technology, we efficiently encapsulate a model hydrophilic agent within the emulsions and study its response to ultrasound irradiation. Using a combination of optical and acoustic imaging methods, we observe payload release upon acoustic vaporization of PFH. Our work demonstrates the utility of microfluidic techniques for controllably loading hydrophilic agents into PFH-based emulsions, which have great potential for acoustically triggered release.


Subject(s)
Drug Carriers/chemistry , Emulsions/chemistry , Fluorocarbons/chemistry , Microfluidic Analytical Techniques/methods , Sound , Hydrophobic and Hydrophilic Interactions
4.
J Acoust Soc Am ; 136(3): 1077, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25190383

ABSTRACT

The acoustic attenuation spectrum of lipid-coated microbubble suspensions was measured in order to characterize the linear acoustic behavior of ultrasound contrast agents. For that purpose, microbubbles samples were generated with a very narrow size distribution by using microfluidics techniques. A performance as good as optical characterization techniques of single microbubbles was achieved using this method. Compared to polydispersions (i.e., contrast agents used clinically), monodisperse contrast agents have a narrower attenuation spectrum, which presents a maximum peak at a frequency value corresponding to the average single bubble resonance frequency. The low polydispersity index of the samples made the estimation of the lipid viscoelastic properties more accurate since, as previously reported, the shell linear parameters may change with the equilibrium bubble radius. The results showed the great advantage of dealing with monodisperse populations rather than polydisperse populations for the acoustic characterization of ultrasound contrast agents.


Subject(s)
Acoustics , Contrast Media/chemistry , Lipids/chemistry , Microbubbles , Sound , Elasticity , Gases , Microfluidic Analytical Techniques , Models, Theoretical , Oscillometry , Particle Size , Pressure , Surface Tension , Viscosity
5.
J Acoust Soc Am ; 130(5): 3472-81, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22088022

ABSTRACT

Ultrasound contrast agents (UCAs) are used clinically to aid detection and diagnosis of abnormal blood flow or perfusion. Characterization of UCAs can aid in the optimization of ultrasound parameters for enhanced image contrast. In this study echogenic liposomes (ELIPs) were characterized acoustically by measuring the frequency-dependent attenuation and backscatter coefficients at frequencies between 3 and 30 MHz using a broadband pulse-echo technique. The experimental methods were initially validated by comparing the attenuation and backscatter coefficients measured from 50-µm and 100-µm polystyrene microspheres with theoretical values. The size distribution of the ELIPs was measured and found to be polydisperse, ranging in size from 40 nm to 6 µm in diameter, with the highest number observed at 65 nm. The ELIP attenuation coefficients ranged from 3.7 ± 1.0 to 8.0 ± 3.3 dB/cm between 3 and 25 MHz. The backscatter coefficients were 0.011 ± 0.006 (cm str)(-1) between 6 and 9 MHz and 0.023 ± 0.006 (cm str)(-1) between 13 and 30 MHz. The measured scattering-to-attenuation ratio ranged from 8% to 22% between 6 and 25 MHz. Thus ELIPs can provide enhanced contrast over a broad range of frequencies and the scattering properties are suitable for various ultrasound imaging applications including diagnostic and intravascular ultrasound.


Subject(s)
Contrast Media , Liposomes , Ultrasonics , Elasticity , Microspheres , Models, Theoretical , Particle Size , Polystyrenes , Pressure , Reproducibility of Results , Scattering, Radiation , Signal Processing, Computer-Assisted , Transducers, Pressure , Ultrasonics/instrumentation , Ultrasonography, Interventional
6.
Biomacromolecules ; 11(8): 1915-20, 2010 Aug 09.
Article in English | MEDLINE | ID: mdl-20690704

ABSTRACT

A novel polymer-modified thermosensitive liposome (pTSL) was developed for the delivery of Doxorubicin (DOX) for cancer therapy. Copolymers containing temperature-responsive N-isopropylacrylamide (NIPAAm) and pH-responsive propylacrylic acid (PAA) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, yielding copolymers with dual pH/temperature-dependent phase transition properties. When attached to liposomes, these copolymers were membrane-disruptive in a pH/temperature-dependent manner. pTSL demonstrated enhanced release profile and significantly lower thermal dose threshold when compared to traditional thermosensitive formulations and were stable in serum with minimal drug leakage over time. These liposomes thus have the potential to dramatically reduce the risk of damage to healthy tissues that is normally associated with liposomal cancer therapy.


Subject(s)
Acrylamides/administration & dosage , Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Liposomes , Hydrogen-Ion Concentration , Temperature
7.
Ultrasound Med Biol ; 45(3): 846-858, 2019 03.
Article in English | MEDLINE | ID: mdl-30638968

ABSTRACT

Acoustic cavitation can be used to temporarily disrupt cell membranes for intracellular delivery of large biomolecules. Termed sonoporation, the ability of this technique for efficient intracellular delivery (i.e., >50% of initial cell population showing uptake) while maintaining cell viability (i.e., >50% of initial cell population viable) has proven to be very difficult. Here, we report that phase-shift nanoemulsions (PSNEs) function as inertial cavitation nuclei for improvement of sonoporation efficiency. The interplay between ultrasound frequency, resultant microbubble dynamics and sonoporation efficiency was investigated experimentally. Acoustic emissions from individual microbubbles nucleated from PSNEs were captured using a broadband passive cavitation detector during and after acoustic droplet vaporization with short pulses of ultrasound at 1, 2.5 and 5 MHz. Time domain features of the passive cavitation detector signals were analyzed to estimate the maximum size (Rmax) of the microbubbles using the Rayleigh collapse model. These results were then applied to sonoporation experiments to test if uptake efficiency is dependent on maximum microbubble size before inertial collapse. Results indicated that at the acoustic droplet vaporization threshold, Rmax was approximately 61.7 ± 5.2, 24.9 ± 2.8, and 12.4 ± 2.1 µm at 1, 2.5 and 5 MHz, respectively. Sonoporation efficiency increased at higher frequencies, with efficiencies of 39.5 ± 13.7%, 46.6 ± 3.28% and 66.8 ± 5.5% at 1, 2.5 and 5 MHz, respectively. Excessive cellular damage was seen at lower frequencies because of the erosive effects of highly energetic inertial cavitation. These results highlight the importance of acoustic cavitation control in determining the outcome of sonoporation experiments. In addition, PSNEs may serve as tailorable inertial cavitation nuclei for other therapeutic ultrasound applications.


Subject(s)
Cell Membrane Permeability/physiology , Microbubbles , Nanoparticles , Sonication/methods , Acoustics , Cell Membrane , Emulsions
8.
Cogent Biol ; 5(1)2019.
Article in English | MEDLINE | ID: mdl-33283019

ABSTRACT

The recent emergence of immunotherapies is transforming cancer treatments. Although many cancer immunotherapies are finding enormous success for treating hematologic tumors, a major obstacle for the treatment of solid tumors is localizing immune cells to the tumor site. Therefore, we have developed a technology that is capable of directing immune cell migration. Specifically, we have packaged chemokines, signaling molecules that promote immune cell migration, inside polyethylene glycol decorated-liposomes. The release profiles of chemokines and other large molecules from the liposomes have been examined in serum-containing media. We have demonstrated that the liposomes are able to release chemokines to induce immune cell migration. Additionally, these liposomes have been shown in vitro to limit cancer cell growth through increased immune cell recruitment. This strategy of encapsulating chemokines within liposomes paves the way for additional cancer immunotherapies and chemokine-based therapies.

9.
ACS Appl Mater Interfaces ; 11(1): 7-12, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30444111

ABSTRACT

The ability to tailor acoustic cavitation of contrast agents is pivotal for ultrasound applications in enhanced imaging, drug delivery, and cancer therapy, etc. A biopolymer-based system of microbubbles and nanobubbles was developed as acoustic reporters that consist of extremely porous hard shells. Despite the existence of an incompressible shell, these porous contrast agents exhibited strong nonlinear acoustic response under very low acoustic pressure, e.g, harmonics, characteristic of free gas bubbles. The large air/water surface area within the transmural capillaries are believed to facilitate oscillation of the inner gas core. Furthermore, the acoustic cavitation can be tailored by variation in polymer structures. This synthetically based platform offers insight for the rational design of advanced acoustic biomaterials.

10.
Ultrasound Med Biol ; 44(12): 2609-2624, 2018 12.
Article in English | MEDLINE | ID: mdl-30201425

ABSTRACT

Thermal ablation of solid tumors via focused ultrasound (FUS) is a non-invasive image-guided alternative to conventional surgical resection. However, the usefulness of the technique is limited in vascularized organs because of convection of heat, resulting in long sonication times and unpredictable thermal lesion formation. Acoustic cavitation has been found to enhance heating but requires use of exogenous nuclei and sufficient acoustic monitoring. In this study, we employed phase-shift nanoemulsions (PSNEs) to promote cavitation and incorporated passive acoustic mapping (PAM) alongside conventional magnetic resonance imaging (MRI) thermometry within the bore of a clinical MRI scanner. Simultaneous PAM and MRI thermometry were performed in an in vivo rabbit tumor model, with and without PSNE to promote cavitation. Vaporization and cavitation of the nanoemulsion could be detected using PAM, which led to accelerated heating, monitored with MRI thermometry. The maximum heating assessed from MRI was well correlated with the integrated acoustic emissions, illustrating cavitation-enhanced heating. Examination of tissue revealed thermal lesions that were larger in the presence of PSNE, in agreement with the thermometry data. Using fixed exposure conditions over 94 sonications in multiple animals revealed an increase in the mean amplitude of acoustic emissions and resulting temperature rise, but with significant variability between sonications, further illustrating the need for real-time monitoring. The results indicate the utility of combined PAM and MRI for monitoring of tumor ablation and provide further evidence for the ability of PSNEs to promote cavitation-enhanced lesioning.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging/methods , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/surgery , Thermometry/methods , Animals , Disease Models, Animal , Male , Rabbits
11.
Ultrasound Med Biol ; 33(5): 797-809, 2007 May.
Article in English | MEDLINE | ID: mdl-17412486

ABSTRACT

Echogenic liposomes (ELIP) are submicron-sized phospholipid vesicles that contain both gas and fluid. With antibody conjugation and drug incorporation, these liposomes can be used as novel targeted diagnostic and therapeutic ultrasound contrast agents. The utility of liposomes for contrast depends upon their stability in an acoustic field, whereas the use of liposomes for drug delivery requires the liberation of encapsulated gas and drug payload at the desired treatment site. The objective of this study was twofold: (1) to characterize the stability of liposome echogenicity after reconstitution and (2) to quantitate the acoustic destruction thresholds of liposomes as a function of peak rarefactional pressure (P(r)), pulse duration (PD) and pulse repetition frequency (PRF). The liposomes were insonified in an anechoic sample chamber using a Philips HDI 5000 diagnostic ultrasound scanner with a L12-5 linear array. Liposome stability was evaluated with 6.9-MHz fundamental and 4.5-MHz harmonic B-mode pulses at various P(r) at a fixed PRF. Liposome destruction thresholds were determined using 6.0-MHz Doppler pulses, by varying the PD with a fixed PRF of 1.25 kHz and by varying the PRF with a fixed PD of 3.33 micros. Videos or freeze-captured images were acquired during each insonation experiment and analyzed for echogenicity in a fixed region of interest as a function of time. An initial increase in echogenicity was observed for fundamental and harmonic B-mode imaging pulses. The threshold for acoustically driven diffusion of gas out of the liposomes using 6.0-MHz Doppler pulses was weakly dependent upon PRF and PD. The rapid fragmentation thresholds, however, were highly dependent upon PRF and PD. The quantification of acoustic destruction thresholds of ELIP is an important first step in their development as diagnostic and drug delivery agents.


Subject(s)
Liposomes , Microbubbles , Ultrasonography/methods , Albumins , Contrast Media , Drug Stability , Fluorocarbons , Humans , Pressure , Time Factors , Ultrasonics , Ultrasonography, Doppler, Duplex/methods
12.
Phys Med Biol ; 62(15): 6144-6163, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28590938

ABSTRACT

Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.


Subject(s)
Acoustics , Emulsions , High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging/methods , Nanotechnology/methods , Phantoms, Imaging , Thermometry/methods , Humans , Magnetic Resonance Spectroscopy , Volatilization
13.
Ultrasound Med Biol ; 41(8): 2191-201, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25979417

ABSTRACT

Localized, targeted delivery of small interfering ribonucleic acid (siRNA) has been the foremost hurdle in the use of siRNA for the treatment of various diseases. Major advances have been achieved in the synthesis of siRNA, which have led to greater target messenger RNA (mRNA) silencing and stability under physiologic conditions. Although numerous delivery strategies have shown promise, there are still limited options for targeted delivery and release of siRNA administered systemically. In this in vitro study, phase-shift nano-emulsions (PSNE) were explored as cavitation nuclei to facilitate free siRNA delivery to cancer cells via sonoporation. A cell suspension containing varying amounts of PSNE and siRNA was exposed to 5-MHz pulsed ultrasound at fixed settings (6.2-MPa peak negative pressure, 5-cycle pulses, 250-Hz pulse repetition frequency (PRF) and total exposure duration of 100 s). Inertial cavitation emissions were detected throughout the exposure using a passive cavitation detector. Successful siRNA delivery was achieved (i.e., >50% cell uptake) with high (>80%) viability. The percentage of cells with siRNA uptake was correlated with the amount of inertial cavitation activity generated from vaporized PSNE. The siRNA remained functional after delivery, significantly reducing expression of green fluorescent protein in a stably transfected cell line. These results indicate that vaporized PSNE can facilitate siRNA entry into the cytosol of a majority of sonicated cells and may provide a non-endosomal route for siRNA delivery.


Subject(s)
Nanocapsules/chemistry , Neoplasms, Experimental/chemistry , Neoplasms, Experimental/genetics , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Sonication/methods , Cell Line, Tumor , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/radiation effects , Electroporation/methods , Emulsions , Humans , Nanocapsules/radiation effects , Nanocapsules/ultrastructure , RNA, Small Interfering/administration & dosage , Sound
14.
J Control Release ; 194: 71-81, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25151982

ABSTRACT

Thermosensitive liposomes have emerged as a viable strategy for localized delivery and triggered release of chemotherapy. MR-guided focused ultrasound (MRgFUS) has the capability of heating tumors in a controlled manner, and when combined with thermosensitive liposomes can potentially reduce tumor burden in vivo. However, the impact of this drug delivery strategy has rarely been investigated. We have developed a unique liposome formulation modified with p(NIPAAm-co-PAA), a polymer that confers sensitivity to both temperature and pH. These polymer-modified thermosensitive liposomes (PTSL) demonstrated sensitivity to focused ultrasound, and required lower thermal doses and were more cytotoxic than traditional formulations in vitro. A set of acoustic parameters characterizing optimal release from PTSL in vitro was applied in the design of a combined MRgFUS/PTSL delivery platform. This platform more effectively reduced tumor burden in vivo when compared to free drug and traditional formulations. Histological analysis indicated greater tumor penetration, more extensive ECM remodeling, and greater cell destruction in tumors administered PTSL, correlating with improved response to the therapy.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Liposomes/chemistry , Acrylamides , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/pharmacology , Cell Survival/drug effects , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Delivery Systems , Excipients , Hot Temperature , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Magnetic Resonance Spectroscopy , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Particle Size , Polymers , Rats , Rats, Inbred F344 , Temperature , Ultrasonics
15.
Phys Med Biol ; 59(13): 3465-81, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24899634

ABSTRACT

Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 s using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650 kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P < 0.05) after PSNE injection and this was well correlated with enhanced HIFU-mediated heating in tumors. The peak temperature rise induced by sonication was significantly higher (P < 0.05) after PSNE injection. For example, the mean per cent change in temperature achieved at 5.2 W of acoustic power was 46 ± 22% with PSNE injection. The results indicate that PSNE nucleates cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could potentially be used to reduce the time and/or acoustic intensity required for HIFU-mediated heating, thereby increasing the feasibility and clinical efficacy of HIFU thermal ablation therapy.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging , Nanotechnology/methods , Neoplasms/surgery , Surgery, Computer-Assisted/methods , Acoustics , Animals , Emulsions , Neoplasms/pathology , Rabbits , Thermometry , Volatilization
16.
J Control Release ; 169(1-2): 112-25, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23583706

ABSTRACT

Liposomes are a promising class of nanomedicine with the potential to provide site-specific chemotherapy, thus improving the quality of cancer patient care. First-generation liposomes have emerged as one of the first nanomedicines used clinically for localized delivery of chemotherapy. Second-generation liposomes, i.e. stimuli-responsive liposomes, have the potential to not only provide site-specific chemotherapy, but also triggered drug release and thus greater spatial and temporal control of therapy. Temperature-sensitive liposomes are an especially attractive option, as tumors can be heated in a controlled and predictable manner with external energy sources. Traditional thermosensitive liposomes are composed of lipids that undergo a gel-to-liquid phase transition at several degrees above physiological temperature. More recently, temperature-sensitization of liposomes has been demonstrated with the use of lysolipids and synthetic temperature-sensitive polymers. The design, drug release behavior, and clinical potential of various temperature-sensitive liposomes, as well as the various heating modalities used to trigger release, are discussed in this review.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Liposomes/chemistry , Neoplasms/drug therapy , Animals , Humans , Models, Molecular , Temperature
17.
J Ther Ultrasound ; 1: 2, 2013.
Article in English | MEDLINE | ID: mdl-24761223

ABSTRACT

BACKGROUND: The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. METHODS: PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm(2)) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. RESULTS: Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating. Broadband emissions detected during HIFU exposure coincided in time with measured accelerated heating, which suggested that IC played an important role in bubble-enhanced heating. In the presence of bubbles, the acoustic power required for the formation of a 9-mm(3) lesion was reduced by 72% and the exposure time required for the onset of albumin denaturation was significantly reduced (by 4 s), provided that the PSNE volume fraction in the polyacrylamide gel was at least 0.008%. CONCLUSIONS: The time or acoustic power required for lesion formation in gel phantoms was dramatically reduced by vaporizing PSNE into bubbles. These results suggest that PSNE may improve the efficiency of HIFU-mediated thermal ablation of solid tumors; thus, further investigation is warranted to determine whether bubble-enhanced HIFU may potentially become a viable option for cancer therapy.

18.
J Healthc Eng ; 4(1): 109-26, 2013.
Article in English | MEDLINE | ID: mdl-23502252

ABSTRACT

Magnetic resonance-guided high intensity focused ultrasound (MRgHIFU) is being explored as a non-invasive technology to treat solid tumors. However, the clinical use of HIFU for tumor ablation applications is currently limited by the long treatment times required. Phase-shift nanoemulsions (PSNE), consisting of liquid perfluorocarbon droplets that can be vaporized into microbubbles, are being developed to accelerate HIFU-mediated heating. The purpose of this study was to examine accumulation of PSNE in intramuscular rabbit tumors in vivo. MR images were acquired before and after intravenous injection of gadolinium-containing PSNE. MR signal enhancement was observed in rabbit tumors up to six hours after injection, indicating that PSNE accumulated in the tumors. In addition, PSNE vaporization was detected in the tumor with B-mode ultrasound imaging, and MR thermometry measurements indicated that PSNE accelerated the rate of HIFU-mediated heating. These results suggest that PSNE could dramatically improve the efficiency and clinical feasibility of MRgHIFU.


Subject(s)
Fluorocarbons/pharmacokinetics , High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging/methods , Nanocapsules/therapeutic use , Neoplasms, Experimental/metabolism , Surgery, Computer-Assisted/methods , Animals , Cell Line, Tumor , Emulsions/pharmacokinetics , Emulsions/therapeutic use , Fluorocarbons/therapeutic use , Neoplasms, Experimental/therapy , Rabbits , Tissue Distribution , Treatment Outcome
19.
Adv Healthc Mater ; 2(9): 1204-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23592698

ABSTRACT

Application of high-intensity focused ultrasound to drug-loaded superhydrophobic meshes affords triggered drug release by displacing an entrapped air layer. The air layer within the superhydrophobic meshes is characterized using direct visualization and B-mode imaging. Drug-loaded superhydrophobic meshes are cytotoxic in an in vitro assay after ultrasound treatment.


Subject(s)
Drug Carriers/chemistry , Ultrasonics , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/toxicity , Camptothecin/analogs & derivatives , Camptothecin/chemistry , Camptothecin/toxicity , Cell Survival/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Irinotecan , MCF-7 Cells , Polyesters/chemistry
20.
Methodist Debakey Cardiovasc J ; 8(1): 13-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22891105

ABSTRACT

Cardiovascular diseases are widely prevalent in western societies, and their associated costs number in the billions of dollars and affect millions of patients each year. Nanovectors targeted to tissues involved in cardiovascular diseases offer great opportunities to improve cardiovascular treatment through their imaging and drug delivery capabilities. Vascular-targeted imaging particles may permit the early identification of atherosclerosis, discriminate between stable and vulnerable atherosclerotic plaques, or guide surgeons as they work on fragile vasculature. Tailored therapeutic nanoparticles may provide safer, more efficient and effective intervention through localization and release of encapsulated therapeutics. Nanovector design involves numerous considerations such as fabrication material, particle size, and surface-modification with ligands for targeting and increasing blood circulation times. Complex blood rheology may affect the efficiency with which dissimilarsized particles target ligand receptors associated with disease. Additionally, the intended use of a nanovector is a critical factor in its design as some materials with poor drug-loading qualities or release kinetics may be suitable for imaging purposes only. Overall, vectors targeted to the vasculature will need to be efficient in avoiding blood clearance, honing to the target location, and binding at the desired site.


Subject(s)
Cardiology/methods , Cardiovascular Diseases/diagnosis , Diagnostic Imaging , Molecular Imaging , Nanomedicine , Nanoparticles , Animals , Humans , Ligands , Particle Size , Predictive Value of Tests , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL