Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Cell ; 143(1): 35-45, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20887891

ABSTRACT

Maintenance of skeletal muscle structure and function requires innervation by motor neurons, such that denervation causes muscle atrophy. We show that myogenin, an essential regulator of muscle development, controls neurogenic atrophy. Myogenin is upregulated in skeletal muscle following denervation and regulates expression of the E3 ubiquitin ligases MuRF1 and atrogin-1, which promote muscle proteolysis and atrophy. Deletion of myogenin from adult mice diminishes expression of MuRF1 and atrogin-1 in denervated muscle and confers resistance to atrophy. Mice lacking histone deacetylases (HDACs) 4 and 5 in skeletal muscle fail to upregulate myogenin and also preserve muscle mass following denervation. Conversely, forced expression of myogenin in skeletal muscle of HDAC mutant mice restores muscle atrophy following denervation. Thus, myogenin plays a dual role as both a regulator of muscle development and an inducer of neurogenic atrophy. These findings reveal a specific pathway for muscle wasting and potential therapeutic targets for this disorder.


Subject(s)
Histone Deacetylases/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/innervation , Muscle, Skeletal/pathology , Myogenin/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Atrophy , Mice , Mice, Knockout , Tripartite Motif Proteins
2.
Blood ; 137(12): 1658-1668, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33027814

ABSTRACT

Very little is known about the role of metabolic regulatory mechanisms in platelet activation and thrombosis. Dimeric pyruvate kinase M2 (PKM2) is a crucial regulator of aerobic glycolysis that facilitates the production of lactate and metabolic reprogramming. Herein, we report that limiting PKM2 dimer formation, using the small molecule inhibitor ML265, negatively regulates lactate production and glucose uptake in human and murine stimulated platelets. Furthermore, limiting PKM2 dimer formation reduced agonist-induced platelet activation, aggregation, clot retraction, and thrombus formation under arterial shear stress in vitro in both human and murine platelets. Mechanistically, limiting PKM2 dimerization downregulated phosphatidylinositol 3-kinase (PI3K)-mediated protein kinase B or serine/threonine-specific protein kinase (Akt)/glycogen synthase kinase 3 (GSK3) signaling in human and murine platelets. To provide further evidence for the role of PKM2 in platelet function, we generated a megakaryocyte or platelet-specific PKM2-/- mutant strain (PKM2fl/flPF4Cre+). Platelet-specific PKM2-deficient mice exhibited impaired agonist-induced platelet activation, aggregation, clot retraction, and PI3K-mediated Akt/GSK3 signaling and were less susceptible to arterial thrombosis in FeCl3 injury-induced carotid- and laser injury-induced mesenteric artery thrombosis models, without altering hemostasis. Wild-type mice treated with ML265 were less susceptible to arterial thrombosis with unaltered tail bleeding times. These findings reveal a major role for PKM2 in coordinating multiple aspects of platelet function, from metabolism to cellular signaling to thrombosis, and implicate PKM2 as a potential target for antithrombotic therapeutic intervention.


Subject(s)
Platelet Activation , Pyruvate Kinase/metabolism , Thrombosis/metabolism , Animals , Blood Platelets/metabolism , Female , Glucose/metabolism , Glycolysis , Humans , Male , Mice, Inbred C57BL
3.
EMBO J ; 36(14): 2126-2145, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28607005

ABSTRACT

Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism.


Subject(s)
Fibroblast Growth Factors/metabolism , GTP Phosphohydrolases/metabolism , Insulin Resistance , Muscles/metabolism , Muscular Atrophy/pathology , Obesity/prevention & control , Animals , GTP Phosphohydrolases/deficiency , Gene Knockdown Techniques , Mice
4.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R855-R869, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32186897

ABSTRACT

Angiotensin II (ANG II) Agtr1a receptor (AT1A) is expressed in cells of the arcuate nucleus of the hypothalamus that express the leptin receptor (Lepr) and agouti-related peptide (Agrp). Agtr1a expression in these cells is required to stimulate resting energy expenditure in response to leptin and high-fat diets (HFDs), but the mechanism activating AT1A signaling by leptin remains unclear. To probe the role of local paracrine/autocrine ANG II generation and signaling in this mechanism, we bred mice harboring a conditional allele for angiotensinogen (Agt, encoding AGT) with mice expressing Cre-recombinase via the Lepr or Agrp promoters to cause cell-specific deletions of Agt (AgtLepr-KO and AgtAgrp-KO mice, respectively). AgtLepr-KO mice were phenotypically normal, arguing against a paracrine/autocrine AGT signaling mechanism for metabolic control. In contrast, AgtAgrp-KO mice exhibited reduced preweaning survival, and surviving adults exhibited altered renal structure and steroid flux, paralleling previous reports of animals with whole body Agt deficiency or Agt disruption in albumin (Alb)-expressing cells (thought to cause liver-specific disruption). Surprisingly, adult AgtAgrp-KO mice exhibited normal circulating AGT protein and hepatic Agt mRNA expression but reduced Agt mRNA expression in adrenal glands. Reanalysis of RNA-sequencing data sets describing transcriptomes of normal adrenal glands suggests that Agrp and Alb are both expressed in this tissue, and fluorescent reporter gene expression confirms Cre activity in adrenal gland of both Agrp-Cre and Alb-Cre mice. These findings lead to the iconoclastic conclusion that extrahepatic (i.e., adrenal) expression of Agt is critically required for normal renal development and survival.


Subject(s)
Adrenal Glands/metabolism , Agouti-Related Protein/metabolism , Angiotensinogen/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Energy Metabolism , Kidney/metabolism , Receptors, Leptin/metabolism , Adrenal Glands/growth & development , Agouti-Related Protein/deficiency , Agouti-Related Protein/genetics , Angiotensinogen/deficiency , Angiotensinogen/genetics , Animals , Arcuate Nucleus of Hypothalamus/growth & development , Autocrine Communication , Female , Gene Expression Regulation, Developmental , Kidney/growth & development , Male , Mice, Knockout , Myocardium/metabolism , Paracrine Communication , Receptors, Leptin/deficiency , Receptors, Leptin/genetics , Serum Albumin/genetics , Serum Albumin/metabolism , Signal Transduction
5.
Genes Dev ; 26(4): 312-24, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22302876

ABSTRACT

We review the physiology and pharmacology of two atypical fibroblast growth factors (FGFs)-FGF15/19 and FGF21-that can function as hormones. Both FGF15/19 and FGF21 act on multiple tissues to coordinate carbohydrate and lipid metabolism in response to nutritional status. Whereas FGF15/19 is secreted from the small intestine in response to feeding and has insulin-like actions, FGF21 is secreted from the liver in response to extended fasting and has glucagon-like effects. FGF21 also acts in an autocrine fashion in several tissues, including adipose. The pharmacological actions of FGF15/19 and FGF21 make them attractive drug candidates for treating metabolic disease.


Subject(s)
Fibroblast Growth Factors/metabolism , Animals , Bile Acids and Salts/metabolism , Fasting/physiology , Fibroblast Growth Factors/pharmacology , Homeostasis/drug effects , Homeostasis/physiology , Humans , Neoplasms/metabolism
6.
Annu Rev Nutr ; 38: 173-196, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29727594

ABSTRACT

Fibroblast growth factor 21 (FGF21) is an endocrine hormone derived from the liver that exerts pleiotropic effects on the body to maintain overall metabolic homeostasis. During the past decade, there has been an enormous effort made to understand the physiological roles of FGF21 in regulating metabolism and to identify the mechanism for its potent pharmacological effects to reverse diabetes and obesity. Through both human and rodent studies, it is now evident that FGF21 levels are dynamically regulated by nutrient sensing, and consequently FGF21 functions as a critical regulator of nutrient homeostasis. In addition, recent studies using new genetic and molecular tools have provided critical insight into the actions of this endocrine factor. This review examines the numerous functions of FGF21 and highlights the therapeutic potential of FGF21-targeted pathways for treating metabolic disease.


Subject(s)
Fibroblast Growth Factors/metabolism , Homeostasis/physiology , Animals , Ethanol/metabolism , Food Deprivation , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Humans , Lipid Metabolism/physiology
7.
Semin Cell Dev Biol ; 53: 85-93, 2016 05.
Article in English | MEDLINE | ID: mdl-26428296

ABSTRACT

The metabolic fibroblast growth factors (FGFs), FGF1, FGF15/19, and FGF21 differ from classic FGFs in that they modulate energy homeostasis in response to fluctuating nutrient availability. These unique mediators of metabolism regulate a number of physiological processes which contribute to their potent pharmacological properties. Administration of pharmacological doses of these FGFs causes weight loss, increases energy expenditure, and improves carbohydrate and lipid metabolism in obese animal models. However, many questions remain regarding the precise molecular and physiological mechanisms governing the effects of individual metabolic FGFs. Here we review the metabolic actions of FGF1, FGF15/19, and FGF21 while providing insights into their pharmacological effects by examining known biological functions.


Subject(s)
Energy Metabolism , Fibroblast Growth Factors/metabolism , Homeostasis , Animals , Humans , Lipid Metabolism , Models, Biological
8.
Biochem J ; 473(9): 1125-7, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27118870

ABSTRACT

Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates carbohydrate and lipid metabolism. In humans, circulating FGF21 is inactivated by proteolytic cleavage of its C-terminus, thereby preventing signalling through a receptor complex. The mechanism for this cleavage event and the factors contributing to the post-translational regulation of FGF21 activity has previously been unknown. In a recent issue of the Biochemical Journal, Zhen et al. have identified fibroblast activation protein (FAP) as the endopeptidase responsible for this site-specific cleavage of human FGF21 (hFGF21), and propose that inhibition of FAP may be a therapeutic strategy to increase endogenous levels of active FGF21.


Subject(s)
Fibroblast Growth Factors/metabolism , Gelatinases/metabolism , Membrane Proteins/metabolism , Proteolysis , Serine Endopeptidases/metabolism , Endopeptidases , Fibroblast Growth Factors/genetics , Gelatinases/genetics , Humans , Membrane Proteins/genetics , Protein Domains , Serine Endopeptidases/genetics
9.
Endocrinology ; 165(11)2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39253796

ABSTRACT

Fibroblast growth factor (FGF) 21 is an endocrine hormone that signals to multiple tissues to regulate metabolism. FGF21 and another endocrine FGF, FGF15/19, signal to target tissues by binding to the co-receptor ß-klotho (KLB), which then facilitates the interaction of these different FGFs with their preferred FGF receptor. KLB is expressed in multiple metabolic tissues, but the specific cell types and spatial distribution of these cells are not known. Furthermore, while circulating FGF21 is primarily produced by the liver, recent publications have indicated that brain-derived FGF21 impacts memory and learning. Here we use reporter mice to comprehensively assess KLB and FGF21 expression throughout the body. These data provide an important resource for guiding future studies to identify important peripheral and central targets of FGFs and to determine the significance of nonhepatic FGF21 production.


Subject(s)
Fibroblast Growth Factors , Klotho Proteins , Liver , Signal Transduction , Animals , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Mice , Klotho Proteins/metabolism , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Brain/metabolism
10.
Sci Rep ; 14(1): 1563, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238383

ABSTRACT

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially by increasing FGF21 expression. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis under physiological stress by generating mice selectively lacking either Atf4 (ATF4 BKO) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum-fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue. Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum-fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis under fed conditions likely in a FGF21-independent manner, in part via increased amino acid uptake and metabolism.


Subject(s)
Activating Transcription Factor 4 , Fibroblast Growth Factors , Thermogenesis , Animals , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Amino Acids/metabolism , Cold Temperature , Mice, Inbred C57BL , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
11.
Am J Physiol Gastrointest Liver Physiol ; 304(4): G371-80, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23257920

ABSTRACT

Bile acid sequestrants are nonabsorbable resins designed to treat hypercholesterolemia by preventing ileal uptake of bile acids, thus increasing catabolism of cholesterol into bile acids. However, sequestrants also improve hyperglycemia and hyperinsulinemia through less characterized metabolic and molecular mechanisms. Here, we demonstrate that the bile acid sequestrant, colesevelam, significantly reduced hepatic glucose production by suppressing hepatic glycogenolysis in diet-induced obese mice and that this was partially mediated by activation of the G protein-coupled bile acid receptor TGR5 and glucagon-like peptide-1 (GLP-1) release. A GLP-1 receptor antagonist blocked suppression of hepatic glycogenolysis and blunted but did not eliminate the effect of colesevelam on glycemia. The ability of colesevelam to induce GLP-1, lower glycemia, and spare hepatic glycogen content was compromised in mice lacking TGR5. In vitro assays revealed that bile acid activation of TGR5 initiates a prolonged cAMP signaling cascade and that this signaling was maintained even when the bile acid was complexed to colesevelam. Intestinal TGR5 was most abundantly expressed in the colon, and rectal administration of a colesevelam/bile acid complex was sufficient to induce portal GLP-1 concentration but did not activate the nuclear bile acid receptor farnesoid X receptor (FXR). The beneficial effects of colesevelam on cholesterol metabolism were mediated by FXR and were independent of TGR5/GLP-1. We conclude that colesevelam administration functions through a dual mechanism, which includes TGR5/GLP-1-dependent suppression of hepatic glycogenolysis and FXR-dependent cholesterol reduction.


Subject(s)
Allylamine/analogs & derivatives , Glucagon-Like Peptide 1/metabolism , Receptors, G-Protein-Coupled/physiology , Allylamine/pharmacology , Animals , Bile Acids and Salts/pharmacology , Blood Glucose/drug effects , Blood Glucose/metabolism , Cholesterol/metabolism , Colesevelam Hydrochloride , Diet, High-Fat , Glucagon-Like Peptide-1 Receptor , Glycogenolysis/drug effects , Liver/drug effects , Male , Mice , Mice, Obese , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Glucagon/metabolism
12.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-36945390

ABSTRACT

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially via upregulation of FGF21. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis by generating mice selectively lacking either Atf4 ( ATF4 BKO ) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum -fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue (WAT). Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum -fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis by activating amino acid metabolism in BAT in a FGF21-independent manner.

13.
bioRxiv ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36711605

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) agonists and fibroblast growth factor 21 (FGF21) confer similar metabolic benefits. Studies report that GLP-1RA induce FGF21. Here, we investigated the mechanisms engaged by the GLP-1R agonist liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. We show that liraglutide increases FGF21 levels via neuronal GLP-1R activation. We also demonstrate that lack of liver Fgf21 expression confers partial resistance to liraglutide-induced weight loss. Since FGF21 reduces carbohydrate intake, we tested whether the contribution of FGF21 to liraglutide-induced weight loss is dependent on dietary carbohydrate content. In control and liver Fgf21 knockout (Liv Fgf21 -/- ) mice fed calorically matched diets with low- (LC) or high-carbohydrate (HC) content, we found that only HC-fed Liv Fgf21 -/- mice were resistant to liraglutide-induced weight loss. Similarly, liraglutide-induced weight loss was partially impaired in Liv Fgf21 -/- mice fed a high-fat, high-sugar (HFHS) diet. Lastly, we show that loss of neuronal ß-klotho expression also diminishes liraglutide-induced weight loss in mice fed a HC or HFHS diet, indicating that FGF21 mediates liraglutide-induced weight loss via neuronal FGF21 action. Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in the presence of high dietary carbohydrate content.

14.
Mol Metab ; 72: 101718, 2023 06.
Article in English | MEDLINE | ID: mdl-37030441

ABSTRACT

OBJECTIVE: Glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP-1RA) and fibroblast growth factor-21 (FGF21) confer similar metabolic benefits. GLP-1RA induce FGF21, leading us to investigate mechanisms engaged by the GLP-1RA liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. METHODS: Circulating FGF21 levels were measured in fasted male C57BL/6J, neuronal GLP-1R knockout, ß-cell GLP-1R knockout, and liver peroxisome proliferator-activated receptor alpha knockout mice treated acutely with liraglutide. To test the metabolic relevance of liver FGF21 in response to liraglutide, chow-fed control and liver Fgf21 knockout (LivFgf21-/-) mice were treated with vehicle or liraglutide in metabolic chambers. Body weight and composition, food intake, and energy expenditure were measured. Since FGF21 reduces carbohydrate intake, we measured body weight in mice fed matched diets with low- (LC) or high-carbohydrate (HC) content and in mice fed a high-fat, high-sugar (HFHS) diet. This was done in control and LivFgf21-/- mice and in mice lacking neuronal ß-klotho (Klb) expression to disrupt brain FGF21 signaling. RESULTS: Liraglutide increases FGF21 levels independently of decreased food intake via neuronal GLP-1R activation. Lack of liver Fgf21 expression confers resistance to liraglutide-induced weight loss due to attenuated reduction of food intake in chow-fed mice. Liraglutide-induced weight loss was impaired in LivFgf21-/- mice when fed HC and HFHS diets but not when fed a LC diet. Loss of neuronal Klb also attenuated liraglutide-induced weight loss in mice fed HC or HFHS diets. CONCLUSIONS: Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in a dietary carbohydrate-dependent manner.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Liraglutide , Animals , Male , Mice , Carbohydrates , Diet, High-Fat , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Liraglutide/pharmacology , Mice, Inbred C57BL , Weight Loss
15.
Proc Natl Acad Sci U S A ; 106(26): 10853-8, 2009 Jun 30.
Article in English | MEDLINE | ID: mdl-19541642

ABSTRACT

The liver plays a crucial role in mobilizing energy during nutritional deprivation. During the early stages of fasting, hepatic glycogenolysis is a primary energy source. As fasting progresses and glycogen stores are depleted, hepatic gluconeogenesis and ketogenesis become major energy sources. Here, we show that fibroblast growth factor 21 (FGF21), a hormone that is induced in liver by fasting, induces hepatic expression of peroxisome proliferator-activated receptor gamma coactivator protein-1alpha (PGC-1alpha), a key transcriptional regulator of energy homeostasis, and causes corresponding increases in fatty acid oxidation, tricarboxylic acid cycle flux, and gluconeogenesis without increasing glycogenolysis. Mice lacking FGF21 fail to fully induce PGC-1alpha expression in response to a prolonged fast and have impaired gluconeogenesis and ketogenesis. These results reveal an unexpected relationship between FGF21 and PGC-1alpha and demonstrate an important role for FGF21 in coordinately regulating carbohydrate and fatty acid metabolism during the progression from fasting to starvation.


Subject(s)
Adaptation, Physiological/physiology , Carbohydrate Metabolism , Fatty Acids/metabolism , Fibroblast Growth Factors/physiology , Starvation/physiopathology , Trans-Activators/metabolism , Adaptation, Physiological/genetics , Animals , Blood Glucose/metabolism , Blotting, Western , Body Weight/genetics , Body Weight/physiology , Fasting/blood , Fasting/physiology , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/pharmacology , Gene Expression Regulation/drug effects , Gluconeogenesis/genetics , Insulin/blood , Lipid Metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reverse Transcriptase Polymerase Chain Reaction , Starvation/blood , Trans-Activators/genetics , Transcription Factors , Triglycerides/blood
16.
Cells ; 11(9)2022 05 06.
Article in English | MEDLINE | ID: mdl-35563871

ABSTRACT

The ability to maintain energy homeostasis is necessary for survival. Recently, an emerging role for ependymogial cells, which line the third ventricle in the hypothalamus in the regulation of energy homeostasis, has been appreciated. These cells are called tanycytes and are physically at the interface of brain communication with peripheral organs and have been proposed to mediate the transport of circulating hormones from the third ventricle into the parenchyma of the hypothalamus. Despite the important role tanycytes have been proposed to play in mediating communication from the periphery to the brain, we understand very little about the ontology and function of these cells due to their limited abundance and lack of ability to genetically target this cell population reliably. To overcome these hurdles, we integrated existing hypothalamic single cell RNA sequencing data, focusing on tanycytes, to allow for more in-depth characterization of tanycytic cell types and their putative functions. Overall, we expect this dataset to serve as a resource for the research community.


Subject(s)
Ependymoglial Cells , Transcriptome , Animals , Ependymoglial Cells/metabolism , Homeostasis , Hypothalamus/metabolism , Mice , Transcriptome/genetics
17.
Mol Metab ; 64: 101564, 2022 10.
Article in English | MEDLINE | ID: mdl-35944896

ABSTRACT

OBJECTIVE: Fibroblast growth factor 21 (FGF21) is a peripherally-derived endocrine hormone that acts on the central nervous system (CNS) to regulate whole body energy homeostasis. Pharmacological administration of FGF21 promotes weight loss in obese animal models and human subjects with obesity. However, the central targets mediating these effects are incompletely defined. METHODS: To explore the mechanism for FGF21's effects to lower body weight, we pharmacologically administer FGF21 to genetic animal models lacking the obligate FGF21 co-receptor, ß-klotho (KLB), in either glutamatergic (Vglut2-Cre) or GABAergic (Vgat-Cre) neurons. In addition, we abolish FGF21 signaling to leptin receptor (LepR-Cre) positive cells. Finally, we examine the synergistic effects of FGF21 and leptin to lower body weight and explore the importance of physiological leptin levels in FGF21-mediated regulation of body weight. RESULTS: Here we show that FGF21 signaling to glutamatergic neurons is required for FGF21 to modulate energy expenditure and promote weight loss. In addition, we demonstrate that FGF21 signals to leptin receptor-expressing cells to regulate body weight, and that central leptin signaling is required for FGF21 to fully stimulate body weight loss during obesity. Interestingly, co-administration of FGF21 and leptin synergistically leads to robust weight loss. CONCLUSIONS: These data reveal an important endocrine crosstalk between liver- and adipose-derived signals which integrate in the CNS to modulate energy homeostasis and body weight regulation.


Subject(s)
Fibroblast Growth Factors , Leptin , Receptors, Leptin , Animals , Body Weight , Fibroblast Growth Factors/pharmacology , Humans , Leptin/metabolism , Leptin/pharmacology , Neurons/metabolism , Obesity/metabolism , Receptors, Leptin/genetics , Weight Loss
18.
19.
Cell Rep ; 40(8): 111239, 2022 08 23.
Article in English | MEDLINE | ID: mdl-36001982

ABSTRACT

Fibroblast growth factor 21 (FGF21) is a liver-derived endocrine hormone that functions to regulate energy homeostasis and macronutrient intake. Recently, FGF21 was reported to be produced and secreted from hypothalamic tanycytes, to regulate peripheral lipid metabolism; however, rigorous investigation of FGF21 expression in the brain has yet to be accomplished. Using a mouse model that drives CRE recombinase in FGF21-expressing cells, we demonstrate that FGF21 is not expressed in the hypothalamus, but instead is produced from the retrosplenial cortex (RSC), an essential brain region for spatial learning and memory. Furthermore, we find that central FGF21 produced in the RSC enhances spatial memory but does not regulate energy homeostasis or sugar intake. Finally, our data demonstrate that administration of FGF21 prolongs the duration of long-term potentiation in the hippocampus and enhances activation of hippocampal neurons. Thus, endogenous and pharmacological FGF21 appear to function in the hippocampus to enhance spatial memory.


Subject(s)
Fibroblast Growth Factors , Liver , Animals , Energy Metabolism/physiology , Fibroblast Growth Factors/metabolism , Homeostasis/physiology , Liver/metabolism , Mice , Mice, Knockout
20.
Diabetes ; 71(12): 2572-2583, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36170659

ABSTRACT

Mitochondria play a vital role in white adipose tissue (WAT) homeostasis including adipogenesis, fatty acid synthesis, and lipolysis. We recently reported that the mitochondrial fusion protein optic atrophy 1 (OPA1) is required for induction of fatty acid oxidation and thermogenic activation in brown adipocytes. In the current study we investigated the role of OPA1 in WAT function in vivo. We generated mice with constitutive or inducible knockout of OPA1 selectively in adipocytes. Studies were conducted under baseline conditions, at thermoneutrality, following high-fat feeding or during cold exposure. OPA1 deficiency reduced mitochondrial respiratory capacity in white adipocytes, impaired lipolytic signaling, repressed expression of de novo lipogenesis and triglyceride synthesis pathways, and promoted adipose tissue senescence and inflammation. Reduced WAT mass was associated with hepatic triglycerides accumulation and glucose intolerance. Moreover, mice deficient for OPA1 in adipocytes had impaired adaptive thermogenesis and reduced cold-induced browning of subcutaneous WAT and were completely resistant to diet-induced obesity. In conclusion, OPA1 expression and function in adipocytes are essential for adipose tissue expansion, lipid biosynthesis, and fatty acid mobilization of WAT and brown adipocytes and for thermogenic activation of brown and beige adipocytes.


Subject(s)
Adipose Tissue, White , Lipid Metabolism , Animals , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Fatty Acids/metabolism , Lipid Metabolism/genetics , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Thermogenesis/genetics , Triglycerides/metabolism , Cold Temperature
SELECTION OF CITATIONS
SEARCH DETAIL