Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Part Fibre Toxicol ; 20(1): 30, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37517998

ABSTRACT

BACKGROUND: Exposure to wood smoke has been shown to contribute to adverse respiratory health effects including airway infections, but the underlying mechanisms are unclear. A preceding study failed to confirm any acute inflammation or cell influx in bronchial wash (BW) or bronchoalveolar lavage (BAL) 24 h after wood smoke exposure but showed unexpected reductions in leukocyte numbers. The present study was performed to investigate responses at an earlier phase, regarding potential development of acute inflammation, as well as indications of cytotoxicity. METHODS: In a double-blind, randomised crossover study, 14 healthy participants were exposed for 2 h to filtered air and diluted wood smoke from incomplete wood log combustion in a common wood stove with a mean particulate matter concentration of 409 µg/m3. Bronchoscopy with BW and BAL was performed 6 h after exposure. Differential cell counts, assessment of DNA-damage and ex vivo analysis of phagocytic function of phagocytosing BAL cells were performed. Wood smoke particles were also collected for in vitro toxicological analyses using bronchial epithelial cells (BEAS-2B) and alveolar type II-like cells (A549). RESULTS: Exposure to wood smoke increased BAL lactate dehydrogenase (LDH) (p = 0.04) and reduced the ex vivo alveolar macrophage phagocytic capacity (p = 0.03) and viability (p = 0.02) vs. filtered air. BAL eosinophil numbers were increased after wood smoke (p = 0.02), while other cell types were unaffected in BW and BAL. In vitro exposure to wood smoke particles confirmed increased DNA-damage, decreased metabolic activity and cell cycle disturbances. CONCLUSIONS: Exposure to wood smoke from incomplete combustion did not induce any acute airway inflammatory cell influx at 6 h, apart from eosinophils. However, there were indications of a cytotoxic reaction with increased LDH, reduced cell viability and impaired alveolar macrophage phagocytic capacity. These findings are in accordance with earlier bronchoscopy findings at 24 h and may provide evidence for the increased susceptibility to infections by biomass smoke exposure, reported in population-based studies.


Subject(s)
Smoke , Wood , Humans , Smoke/adverse effects , Macrophages , Phagocytosis , Inflammation/chemically induced , DNA , Bronchoalveolar Lavage Fluid , Inhalation Exposure/adverse effects
2.
Am J Respir Cell Mol Biol ; 66(6): 638-647, 2022 06.
Article in English | MEDLINE | ID: mdl-35286818

ABSTRACT

DNA methylation patterns in chronic pulmonary obstructive disease (COPD) might offer new insights into disease pathogenesis. To assess methylation profiles in the main COPD target organ, we performed an epigenome-wide association study on BAL cells. Bronchoscopies were performed in 18 subjects with COPD and 15 control subjects (ex- and current smokers). DNA methylation was measured using the Illumina MethylationEPIC BeadChip Kit, covering more than 850,000 CpGs. Differentially methylated positions (DMPs) were examined for 1) enrichment in pathways and functional gene relationships using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology, 2) accelerated aging using Horvath's epigenetic clock, 3) correlation with gene expression, and 4) colocalization with genetic variation. We found 1,155 Bonferroni-significant (P < 6.74 × 10-8) DMPs associated with COPD, many with large effect sizes. Functional analysis identified biologically plausible pathways and gene relationships, including enrichment for transcription factor activity. Strong correlation was found between DNA methylation and chronological age but not between COPD and accelerated aging. For 79 unique DMPs, DNA methylation correlated significantly with gene expression in BAL cells. Thirty-nine percent of DMPs were colocalized with COPD-associated SNPs. To the best of our knowledge, this is the first epigenome-wide association study of COPD on BAL cells, and our analyses revealed many differential methylation sites. Integration with mRNA data showed a strong functional readout for relevant genes, identifying sites where DNA methylation might directly affect expression. Almost half of DMPs were colocated with SNPs identified in previous genome-wide association studies of COPD, suggesting joint genetic and epigenetic pathways related to disease.


Subject(s)
Epigenome , Pulmonary Disease, Chronic Obstructive , DNA Methylation/genetics , Epigenesis, Genetic , Genome-Wide Association Study , Humans , Lung , Pulmonary Disease, Chronic Obstructive/genetics
3.
Prostaglandins Other Lipid Mediat ; 160: 106636, 2022 06.
Article in English | MEDLINE | ID: mdl-35307566

ABSTRACT

Inflammatory signaling pathways involving eicosanoids and other regulatory lipid mediators are a subject of intensive study, and a role for these in acute lung injury is not yet well understood. We hypothesized that oxylipin release from lung injury could be detected in bronchoalveolar lavage fluid and in plasma. In a porcine model of surfactant depletion, ventilation with hyperinflation was assessed. Bronchoalveolar lavage and plasma samples were analyzed for 37 different fatty acid metabolites (oxylipins). Over time, hyperinflation altered concentrations of 4 oxylipins in plasma (TXB2, PGE2, 15-HETE and 11-HETE), and 9 oxylipins in bronchoalveolar lavage fluid (PGF2α, PGE2, PGD2, 12,13-DiHOME, 11,12-DiHETrE, 13-HODE, 9-HODE, 15-HETE, 11-HETE). Acute lung injury caused by high tidal volume ventilation in this porcine model was associated with rapid changes in some elements of the oxylipin profile, detectable in lavage fluid, and plasma. These oxylipins may be relevant in the pathogenesis of acute lung injury by hyperinflation.


Subject(s)
Acute Lung Injury , Oxylipins , Animals , Bronchoalveolar Lavage Fluid , Dinoprostone , Eicosanoids , Swine
4.
Eur Respir J ; 58(1)2021 07.
Article in English | MEDLINE | ID: mdl-33446605

ABSTRACT

BACKGROUND: Pulmonary sarcoidosis is an inflammatory disease characterised by granuloma formation and heterogeneous clinical outcome. Tumour necrosis factor (TNF) is a pro-inflammatory cytokine contributing to granuloma formation and high levels of TNF have been shown to associate with progressive disease. Mononuclear phagocytes (MNPs) are potent producers of TNF and highly responsive to inflammation. In sarcoidosis, alveolar macrophages have been well studied. However, MNPs also include monocytes/monocyte-derived cells and dendritic cells, which are poorly studied in sarcoidosis, despite their central role in inflammation. OBJECTIVE: To determine the role of pulmonary monocyte-derived cells and dendritic cells during sarcoidosis. METHODS: We performed in-depth phenotypic, functional and transcriptomic analysis of MNP subsets from blood and bronchoalveolar lavage (BAL) fluid from 108 sarcoidosis patients and 30 healthy controls. We followed the clinical development of patients and assessed how the repertoire and function of MNP subsets at diagnosis correlated with 2-year disease outcome. RESULTS: Monocytes/monocyte-derived cells were increased in blood and BAL of sarcoidosis patients compared to healthy controls. Interestingly, high frequencies of blood intermediate monocytes at time of diagnosis associated with chronic disease development. RNA sequencing analysis showed highly inflammatory MNPs in BAL of sarcoidosis patients. Furthermore, frequencies of BAL monocytes/monocyte-derived cells producing TNF without exogenous stimulation at time of diagnosis increased in patients that were followed longitudinally. In contrast to alveolar macrophages, the frequency of TNF-producing BAL monocytes/monocyte-derived cells at time of diagnosis was highest in sarcoidosis patients that developed progressive disease. CONCLUSION: Our data show that pulmonary monocytes/monocyte-derived cells are highly inflammatory and can be used as a predictor of disease outcome in sarcoidosis patients.


Subject(s)
Sarcoidosis, Pulmonary , Sarcoidosis , Bronchoalveolar Lavage Fluid , Humans , Monocytes , Tumor Necrosis Factor-alpha
5.
Respir Res ; 21(1): 330, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317530

ABSTRACT

BACKGROUND: Differences in the expression of regulatory T cells (Tregs) have been suggested to explain why some smokers develop COPD and some do not. Upregulation of Tregs in response to smoking would restrain airway inflammation and thus the development of COPD; while the absense of such upregulation would over time lead to chronic inflammation and COPD. We hypothesized that-among COPD patients-the same mechanism would affect rate of decline in lung function; specifically, that a decreased expression of Tregs would be associated with a more rapid decline in FEV1. METHODS: Bronchoscopy with BAL was performed in 52 subjects recruited from the longitudinal OLIN COPD study; 12 with COPD and a rapid decline in lung function (loss of FEV1 ≥ 60 ml/year), 10 with COPD and a non-rapid decline in lung function (loss of FEV1 ≤ 30 ml/year), 15 current and ex-smokers and 15 non-smokers with normal lung function. BAL lymphocyte subsets were determined using flow cytometry. RESULTS: The proportions of Tregs with regulatory function (FoxP3+/CD4+CD25bright) were significantly lower in COPD subjects with a rapid decline in lung function compared to those with a non-rapid decline (p = 0.019). This result was confirmed in a mixed model regression analysis in which adjustments for inhaled corticosteroid usage, smoking, sex and age were evaluated. No significant difference was found between COPD subjects and smokers or non-smokers with normal lung function. CONCLUSIONS: COPD subjects with a rapid decline in lung function had lower proportions of T cells with regulatory function in BAL fluid, suggesting that an inability to suppress the inflammatory response following smoking might lead to a more rapid decline in FEV1. Trial registration Clinicaltrials.gov identifier NCT02729220.


Subject(s)
Lung/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Smoking/adverse effects , T-Lymphocytes, Regulatory/immunology , Aged , Bronchoscopy , CD4 Lymphocyte Count , Case-Control Studies , Cross-Sectional Studies , Disease Progression , Female , Forced Expiratory Volume , Forkhead Transcription Factors/analysis , Humans , Immunophenotyping , Interleukin-2 Receptor alpha Subunit/analysis , Lung/physiopathology , Male , Middle Aged , Phenotype , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Smoking/immunology , Smoking/physiopathology
6.
PLoS Pathog ; 13(6): e1006462, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28640917

ABSTRACT

Hantaviruses infect humans via inhalation of virus-contaminated rodent excreta. Infection can cause severe disease with up to 40% mortality depending on the viral strain. The virus primarily targets the vascular endothelium without direct cytopathic effects. Instead, exaggerated immune responses may inadvertently contribute to disease development. Mononuclear phagocytes (MNPs), including monocytes and dendritic cells (DCs), orchestrate the adaptive immune responses. Since hantaviruses are transmitted via inhalation, studying immunological events in the airways is of importance to understand the processes leading to immunopathogenesis. Here, we studied 17 patients infected with Puumala virus that causes a mild form of hemorrhagic fever with renal syndrome (HFRS). Bronchial biopsies as well as longitudinal blood draws were obtained from the patients. During the acute stage of disease, a significant influx of MNPs expressing HLA-DR, CD11c or CD123 was detected in the patients' bronchial tissue. In parallel, absolute numbers of MNPs were dramatically reduced in peripheral blood, coinciding with viremia. Expression of CCR7 on the remaining MNPs in blood suggested migration to peripheral and/or lymphoid tissues. Numbers of MNPs in blood subsequently normalized during the convalescent phase of the disease when viral RNA was no longer detectable in plasma. Finally, we exposed blood MNPs in vitro to Puumala virus, and demonstrated an induction of CCR7 expression on MNPs. In conclusion, the present study shows a marked redistribution of blood MNPs to the airways during acute hantavirus disease, a process that may underlie the local immune activation and contribute to immunopathogenesis in hantavirus-infected patients.


Subject(s)
Endothelium, Vascular/virology , Hantavirus Infections/immunology , Hemorrhagic Fever with Renal Syndrome/virology , Phagocytes/virology , Hantavirus Pulmonary Syndrome/immunology , Hantavirus Pulmonary Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/immunology , Humans , Immunity, Humoral/immunology , Phagocytes/immunology , RNA, Viral/genetics
7.
Immunology ; 153(4): 502-512, 2018 04.
Article in English | MEDLINE | ID: mdl-29044495

ABSTRACT

Epidemiological studies have consistently shown associations between elevated concentrations of urban particulate matter (UPM) air pollution and exacerbations of asthma and chronic obstructive pulmonary disease, which are both associated with viral respiratory infections. The effects of UPM on dendritic cell (DC) -stimulated CD4 T lymphocytes have been investigated previously, but little work has focused on CD8 T-lymphocyte responses despite their importance in anti-viral immunity. To address this, we examined the effects of UPM on DC-stimulated naive CD8 T-cell responses. Expression of the maturation/activation markers CD83, CCR7, CD40 and MHC class I on human myeloid DCs (mDCs) was characterized by flow cytometry after stimulation with UPMin vitro in the presence/absence of granulocyte-macrophage colony-stimulating factor (GM-CSF). The capacity of these mDCs to stimulate naive CD8 T-lymphocyte responses in allogeneic co-culture was then assessed by measuring T-cell cytokine secretion using cytometric bead array, and proliferation and frequency of interferon-γ (IFN-γ)-producing T lymphocytes by flow cytometry. Treatment of mDCs with UPM increased expression of CD83 and CCR7, but not MHC class I. In allogeneic co-cultures, UPM treatment of mDCs enhanced CD8 T-cell proliferation and the frequency of IFN-γ+ cells. The secretion of tumour necrosis factor-α, interleukin-13, Granzyme A and Granzyme B were also increased. GM-CSF alone, and in concert with UPM, enhanced many of these T-cell functions. The PM-induced increase in Granzyme A was confirmed in a human experimental diesel exposure study. These data demonstrate that UPM treatment of mDCs enhances priming of naive CD8 T lymphocytes and increases production of pro-inflammatory cytokines. Such UPM-induced stimulation of CD8 cells may potentiate T-lymphocyte cytotoxic responses upon concurrent airway infection, increasing bystander damage to the airways.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/drug effects , Particulate Matter/pharmacology , Antigens, CD/biosynthesis , Antigens, CD/immunology , Cell Proliferation , Cells, Cultured , Dendritic Cells/immunology , Healthy Volunteers , Humans , Immunoglobulins/biosynthesis , Immunoglobulins/immunology , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/immunology , Particulate Matter/chemistry , Receptors, CCR7/biosynthesis , Receptors, CCR7/immunology , CD83 Antigen
8.
Respir Res ; 19(1): 64, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29650051

ABSTRACT

BACKGROUND: The imbalance between proteases and anti-proteases is considered to contribute to the development of COPD. Our aim was to evaluate the protease MMP-9, the antiprotease TIMP-1 and the MMP-9/TIMP-1-ratio as biomarkers in relation to prognosis. Prognosis was assessed as lung function decline and mortality. This was done among subjects with COPD in a population-based cohort. METHODS: In 2005, clinical examinations including spirometry and peripheral blood sampling, were made in a longitudinal population-based cohort. In total, 1542 individuals participated, whereof 594 with COPD. In 2010, 1031 subjects participated in clinical examinations, and 952 subjects underwent spirometry in both 2005 and 2010. Serum MMP-9 and TIMP-1 concentrations were measured with enzyme linked immunosorbent assay (ELISA). Mortality data were collected from the Swedish national mortality register from the date of examination in 2005 until 31st December 2010. RESULTS: The correlation between biomarkers and lung function decline was similar in non-COPD and COPD, but only significant for MMP-9 and MMP-9/TIMP-1-ratio in non-COPD. Mortality was higher in COPD than non-COPD (16% vs. 10%, p = 0.008). MMP-9 concentrations and MMP-9/TIMP-1 ratios in 2005 were higher among those who died during follow up, as well as among those alive but not participating in 2010, when compared to those participating in the 2010-examination. In non-COPD, male sex, age, burden of smoking, heart disease and MMP-9/TIMP-1 ratio were associated with increased risk for death, while increased TIMP-1 was protective. Among those with COPD, age, current smoking, increased MMP-9 and MMP-9/TIMP-1 ratio were associated with an increased risk for death. CONCLUSIONS: The expected association between these biomarkers and lung function decline in COPD was not confirmed in this population-based study, probably due to a healthy survivor effect. Still, it is suggested that increased proteolytic imbalance may be of greater prognostic importance in COPD than in non-COPD.


Subject(s)
Matrix Metalloproteinase 9/blood , Population Surveillance , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Research Report , Tissue Inhibitor of Metalloproteinase-1/blood , Aged , Biomarkers/blood , Cohort Studies , Female , Humans , Male , Middle Aged , Prognosis , Proteolysis , Respiratory Function Tests/methods , Spirometry/methods
9.
Respir Res ; 19(1): 244, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30526599

ABSTRACT

BACKGROUND: Cytotoxic lymphocytes are increased in the airways of COPD patients. Whether this increase is driven primarily by the disease or by smoking is not clear, nor whether it correlates with the rate of decline in lung function. METHODS: Bronchoscopy with BAL was performed in 52 subjects recruited from the longitudinal OLIN COPD study according to pre-determined criteria; 12 with COPD and a rapid decline in lung function (loss of FEV1 ≥ 60 ml/year), 10 with COPD and a non-rapid decline in lung function (loss of FEV1 ≤ 30 ml/year), 15 current and ex-smokers and 15 non-smokers with normal lung function. BAL lymphocyte subsets were determined using flow cytometry. RESULTS: In BAL fluid, the proportions of NK, iNKT and NKT-like cells all increased with pack-years. Within the COPD group, NK cells - but not iNKT or NKT-like cells - were significantly elevated also in subjects that had quit smoking. In contrast, current smoking was associated with a marked increase in iNKT and NKT-like cells but not in NK cells. Rate of lung function decline did not significantly affect any of the results. CONCLUSIONS: In summary, increased proportions of NK cells in BAL fluid were associated with COPD; iNKT and NKT-like cells with current smoking but not with COPD. Interestingly, NK cell percentages did not normalize in COPD subjects that had quit smoking, indicating that these cells might play a role in the continued disease progression seen in COPD even after smoking cessation. TRIAL REGISTRATION: Clinicaltrials.gov identifier NCT02729220 .


Subject(s)
Killer Cells, Natural/metabolism , Natural Killer T-Cells/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoking/adverse effects , Smoking/metabolism , Aged , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Killer Cells, Natural/pathology , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Middle Aged , Natural Killer T-Cells/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Smoking/pathology , Smoking Cessation
10.
J Immunol ; 196(11): 4498-509, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27183618

ABSTRACT

Every breath we take contains potentially harmful pathogens or allergens. Dendritic cells (DCs), monocytes, and macrophages are essential in maintaining a delicate balance of initiating immunity without causing collateral damage to the lungs because of an exaggerated inflammatory response. To document the diversity of lung mononuclear phagocytes at steady-state, we performed bronchoscopies on 20 healthy subjects, sampling the proximal and distal airways (bronchial wash and bronchoalveolar lavage, respectively), as well as mucosal tissue (endobronchial biopsies). In addition to a substantial population of alveolar macrophages, we identified subpopulations of monocytes, myeloid DCs (MDCs), and plasmacytoid DCs in the lung mucosa. Intermediate monocytes and MDCs were highly frequent in the airways compared with peripheral blood. Strikingly, the density of mononuclear phagocytes increased upon descending the airways. Monocytes from blood and airways produced 10-fold more proinflammatory cytokines than MDCs upon ex vivo stimulation. However, airway monocytes were less inflammatory than blood monocytes, suggesting a more tolerant nature. The findings of this study establish how to identify human lung mononuclear phagocytes and how they function in normal conditions, so that dysregulations in patients with respiratory diseases can be detected to elucidate their contribution to immunity or pathogenesis.


Subject(s)
Inflammation/immunology , Monocytes/immunology , Respiratory Mucosa/immunology , Adolescent , Adult , Dendritic Cells/immunology , Female , Healthy Volunteers , Humans , Male , Young Adult
11.
Anal Bioanal Chem ; 409(11): 2967-2980, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28235994

ABSTRACT

The adverse effects of petrodiesel exhaust exposure on the cardiovascular and respiratory systems are well recognized. While biofuels such as rapeseed methyl ester (RME) biodiesel may have ecological advantages, the exhaust generated may cause adverse health effects. In the current study, we investigated the responses of bioactive lipid mediators in human airways after biodiesel exhaust exposure using lipidomic profiling methods. Lipid mediator levels in lung lavage were assessed following 1-h biodiesel exhaust (average particulate matter concentration, 159 µg/m3) or filtered air exposure in 15 healthy individuals in a double-blinded, randomized, controlled, crossover study design. Bronchoscopy was performed 6 h post exposure and lung lavage fluids, i.e., bronchial wash (BW) and bronchoalveolar lavage (BAL), were sequentially collected. Mass spectrometry methods were used to detect a wide array of oxylipins (including eicosanoids), endocannabinoids, N-acylethanolamines, and related lipid metabolites in the collected BW and BAL samples. Six lipids in the human lung lavage samples were altered following biodiesel exhaust exposure, three from BAL samples and three from BW samples. Of these, elevated levels of PGE2, 12,13-DiHOME, and 13-HODE, all of which were found in BAL samples, reached Bonferroni-corrected significance. This is the first study in humans reporting responses of bioactive lipids following biodiesel exhaust exposure and the most pronounced responses were seen in the more peripheral and alveolar lung compartments, reflected by BAL collection. Since the responsiveness and diagnostic value of a subset of the studied lipid metabolites were established in lavage fluids, we conclude that our mass spectrometry profiling method is useful to assess effects of human exposure to vehicle exhaust.


Subject(s)
Biofuels/analysis , Bronchoalveolar Lavage Fluid/chemistry , Dinoprostone/analysis , Endocannabinoids/analysis , Ethanolamines/analysis , Oxylipins/analysis , Vehicle Emissions/analysis , Adult , Environmental Exposure/analysis , Female , Humans , Male , Mass Spectrometry/methods , Reproducibility of Results , Sensitivity and Specificity
12.
Anal Bioanal Chem ; 408(17): 4751-64, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27113461

ABSTRACT

Metabolomics protocols are used to comprehensively characterize the metabolite content of biological samples by exploiting cutting-edge analytical platforms, such as gas chromatography (GC) or liquid chromatography (LC) coupled to mass spectrometry (MS) assays, as well as nuclear magnetic resonance (NMR) assays. We have developed novel sample preparation procedures combined with GC-MS, LC-MS, and NMR metabolomics profiling for analyzing bronchial wash (BW) and bronchoalveolar lavage (BAL) fluid from 15 healthy volunteers following exposure to biodiesel exhaust and filtered air. Our aim was to investigate the responsiveness of metabolite profiles in the human lung to air pollution exposure derived from combustion of biofuels, such as rapeseed methyl ester biodiesel, which are increasingly being promoted as alternatives to conventional fossil fuels. Our multi-platform approach enabled us to detect the greatest number of unique metabolites yet reported in BW and BAL fluid (82 in total). All of the metabolomics assays indicated that the metabolite profiles of the BW and BAL fluids differed appreciably, with 46 metabolites showing significantly different levels in the corresponding lung compartments. Furthermore, the GC-MS assay revealed an effect of biodiesel exhaust exposure on the levels of 1-monostearylglycerol, sucrose, inosine, nonanoic acid, and ethanolamine (in BAL) and pentadecanoic acid (in BW), whereas the LC-MS assay indicated a shift in the levels of niacinamide (in BAL). The NMR assay only identified lactic acid (in BW) as being responsive to biodiesel exhaust exposure. Our findings demonstrate that the proposed multi-platform approach is useful for wide metabolomics screening of BW and BAL fluids and can facilitate elucidation of metabolites responsive to biodiesel exhaust exposure. Graphical Abstract Graphical abstract illustrating the study workflow. NMR Nuclear Magnetic Resonance, LC-TOFMS Liquid chromatography-Time Of Flight Mass Spectrometry, GC Gas Chromatography-Mass spectrometry.


Subject(s)
Air Pollution , Bronchoalveolar Lavage Fluid , Environmental Exposure , Metabolomics , Chromatography, Liquid , Female , Gas Chromatography-Mass Spectrometry , Humans , Magnetic Resonance Spectroscopy , Male
13.
Respir Res ; 16: 28, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25849664

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease, COPD, is an increasing cause of morbidity and mortality worldwide, and an imbalance between proteases and antiproteases has been implicated to play a role in COPD pathogenesis. Matrix metalloproteinases (MMP) are important proteases that along with their inhibitors, tissue inhibitors of metalloproteinases (TIMP), affect homeostasis of elastin and collagen, of importance for the structural integrity of human airways. Small observational studies indicate that these biomarkers are involved in the pathogenesis of COPD. The aim of this study was to investigate serum levels of MMP-9 and TIMP-1 in a large Swedish population-based cohort, and their association with disease severity and important clinical symptoms of COPD such as productive cough. METHODS: Spirometry was performed and peripheral blood samples were collected in a populations-based cohort (median age 67 years) comprising subjects with COPD (n = 594) and without COPD (n = 948), in total 1542 individuals. Serum MMP-9 and TIMP-1 concentrations were measured with enzyme linked immunosorbant assay (ELISA) and related to lung function data and symptoms. RESULTS: Median serum MMP-9 values were significantly higher in COPD compared with non-COPD 535 vs. 505 ng/ml (P = 0.017), without any significant differences in serum TIMP-1-levels or MMP-9/TIMP-1-ratio. In univariate analysis, productive cough and decreasing FEV1% predicted correlated significantly with increased MMP-9 among subjects with COPD (P = 0.004 and P = 0.001 respectively), and FEV1% predicted remained significantly associated to MMP-9 in a multivariate model adjusting for age, sex, pack years and productive cough (P = 0.033). CONCLUSION: Productive cough and decreasing FEV1 were each associated with MMP-9 in COPD, and decreasing FEV1 remained significantly associated with MMP-9 also after adjustment for common confounders in this population-based COPD cohort. The increased serum MMP-9 concentrations in COPD indicate an enhanced proteolytic activity that is related to disease severity, and further longitudinal studies are important for the understanding of MMP-9 in relation to the disease process and the pathogenesis of different COPD phenotypes.


Subject(s)
Matrix Metalloproteinase 9/blood , Pulmonary Disease, Chronic Obstructive/blood , Aged , Biomarkers/blood , Case-Control Studies , Chi-Square Distribution , Cough/etiology , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Forced Expiratory Volume , Humans , Lung/physiopathology , Male , Middle Aged , Multivariate Analysis , Predictive Value of Tests , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/enzymology , Pulmonary Disease, Chronic Obstructive/physiopathology , Risk Factors , Severity of Illness Index , Sweden , Tissue Inhibitor of Metalloproteinase-1/blood , Up-Regulation
14.
Part Fibre Toxicol ; 12: 33, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26511835

ABSTRACT

BACKGROUND: Smoke from combustion of biomass fuels is a major risk factor for respiratory disease, but the underlying mechanisms are poorly understood. The aim of this study was to determine whether exposure to wood smoke from incomplete combustion would elicit airway inflammation in humans. METHODS: Fourteen healthy subjects underwent controlled exposures on two separate occasions to filtered air and wood smoke from incomplete combustion with PM1 concentration at 314 µg/m(3) for 3 h in a chamber. Bronchoscopy with bronchial wash (BW), bronchoalveolar lavage (BAL) and endobronchial mucosal biopsies was performed after 24 h. Differential cell counts and soluble components were analyzed, with biopsies stained for inflammatory markers using immunohistochemistry. In parallel experiments, the toxicity of the particulate matter (PM) generated during the chamber exposures was investigated in vitro using the RAW264.7 macrophage cell line. RESULTS: Significant reductions in macrophage, neutrophil and lymphocyte numbers were observed in BW (p < 0.01, <0.05, <0.05, respectively) following the wood smoke exposure, with a reduction in lymphocytes numbers in BAL fluid (<0.01. This unexpected cellular response was accompanied by decreased levels of sICAM-1, MPO and MMP-9 (p < 0.05, <0.05 and <0.01). In contrast, significant increases in submucosal and epithelial CD3+ cells, epithelial CD8+ cells and submucosal mast cells (p < 0.01, <0.05, <0.05 and <0.05, respectively), were observed after wood smoke exposure. The in vitro data demonstrated that wood smoke particles generated under these incomplete combustion conditions induced cell death and DNA damage, with only minor inflammatory responses. CONCLUSIONS: Short-term exposure to sooty PAH rich wood smoke did not induce an acute neutrophilic inflammation, a classic hallmark of air pollution exposure in humans. While minor proinflammatory lymphocytic and mast cells effects were observed in the bronchial biopsies, significant reductions in BW and BAL cells and soluble components were noted. This unexpected observation, combined with the in vitro data, suggests that wood smoke particles from incomplete combustion could be potentially cytotoxic. Additional research is required to establish the mechanism of this dramatic reduction in airway leukocytes and to clarify how this acute response contributes to the adverse health effects attributed to wood smoke exposure. TRIAL REGISTRATION: NCT01488500.


Subject(s)
Smoke , Wood , Bronchoalveolar Lavage Fluid , Humans , Inhalation Exposure , Respiratory Function Tests , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/physiopathology
15.
Eur Respir J ; 43(2): 453-63, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24036245

ABSTRACT

Oxylipins are oxidised fatty acids that can exert lipid mediator functions in inflammation, and several oxylipins derived from arachidonic acid are linked to asthma. This study quantified oxylipin profiles in different regions of the lung to obtain a broad-scale characterisation of the allergic asthmatic inflammation in relation to healthy individuals. Bronchoalveolar lavage fluid (BALF), bronchial wash fluid and endobronchial mucosal biopsies were collected from 16 healthy and 16 mildly allergic asthmatic individuals. Inflammatory cell counts, immunohistochemical staining and oxylipin profiling were performed. Univariate and multivariate statistics were employed to evaluate compartment-dependent and diagnosis-dependent oxylipin profiles in relation to other measured parameters. Multivariate modelling showed significantly different bronchial wash fluid and BALF oxylipin profiles in both groups (R(2)Y[cum]=0.822 and Q(2)[cum]=0.759). Total oxylipin concentrations and five individual oxylipins, primarily from the lipoxygenase (LOX) pathway of arachidonic and linoleic acid, were elevated in bronchial wash fluid from asthmatics compared to that from healthy controls, supported by immunohistochemical staining of 15-LOX-1 in the bronchial epithelium. No difference between the groups was found among BALF oxylipins. In conclusion, bronchial wash fluid and BALF contain distinct oxylipin profiles, which may have ramifications for the study of respiratory diseases. Specific protocols for sampling proximal and distal airways separately should be employed for lipid mediator studies.


Subject(s)
Asthma/metabolism , Gene Expression Regulation , Lipids/chemistry , Adolescent , Adult , Arachidonic Acid/chemistry , Biopsy , Bronchoalveolar Lavage Fluid , Bronchoscopy , Case-Control Studies , Exhalation , Female , Healthy Volunteers , Humans , Hypersensitivity/metabolism , Inflammation/metabolism , Linoleic Acid/chemistry , Male , Nitric Oxide/analysis , Oxylipins/metabolism , Young Adult
16.
Environ Health ; 13(1): 16, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24621126

ABSTRACT

BACKGROUND: Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects. METHODS: Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells. RESULTS: The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the active charcoal combination filter appeared less inflammatory to A549 cells. CONCLUSIONS: A cabin air inlet particle filter including an active charcoal component was highly effective in reducing both DE particulate and gaseous components, with reduced exhaust-induced symptoms in healthy volunteers. These data demonstrate the effectiveness of cabin filters to protect subjects travelling in vehicles from diesel exhaust emissions.


Subject(s)
Air Filters , Air Pollutants/toxicity , Air Pollution/prevention & control , Irritants/toxicity , Motor Vehicles , Vehicle Emissions/toxicity , Adolescent , Adult , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cell Line, Tumor , Charcoal , Cross-Over Studies , Female , Healthy Volunteers , Humans , Hydrocarbons/analysis , Hydrocarbons/toxicity , Interleukin-8/immunology , Irritants/analysis , Male , Nitric Oxide/analysis , Nitric Oxide/toxicity , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , Odorants , Particulate Matter/analysis , Particulate Matter/toxicity , Respiratory Function Tests , Taste , Vehicle Emissions/analysis , Young Adult
17.
Part Fibre Toxicol ; 11: 62, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25487196

ABSTRACT

BACKGROUND: Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. METHODS: In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m³ particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4-6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. RESULTS: Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P < 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P > 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P < 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P > 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P > 0.05 for all). CONCLUSIONS: Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.


Subject(s)
Endothelium, Vascular/drug effects , Smoke Inhalation Injury/physiopathology , Thrombosis/etiology , Vascular Diseases/etiology , Vasomotor System/drug effects , Adult , Bicycling , Biomarkers/blood , Biomarkers/metabolism , Cross-Over Studies , Double-Blind Method , Endothelium, Vascular/immunology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Firefighters , Humans , Male , Platelet Activation/drug effects , Risk , Scotland/epidemiology , Smoke/adverse effects , Smoke Inhalation Injury/blood , Smoke Inhalation Injury/immunology , Smoke Inhalation Injury/metabolism , Thrombosis/epidemiology , Vascular Diseases/epidemiology , Vascular Stiffness/drug effects , Vasomotor System/immunology , Vasomotor System/metabolism , Vasomotor System/physiopathology , Wood , Young Adult
18.
Inhal Toxicol ; 25(3): 160-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23421487

ABSTRACT

CONTEXT: Proximity to traffic, particularly to diesel-powered vehicles, has been associated with inducing and enhancing allergies. To investigate the basis for this association, we performed controlled exposures of allergic rhinitics to diesel exhaust (DE) at a dose known to be pro-inflammatory in healthy individuals. OBJECTIVE: We hypothesized that diesel-exhaust exposure would augment lower airway inflammation in allergic rhinitics. MATERIALS AND METHODS: Fourteen allergic rhinitics were exposed in a double-blinded, randomized trial to DE (100 µg/m³ PM10) and filtered air for 2 h on separate occasions. Bronchoscopy with endobronchial mucosal biopsies and airway lavage was performed 18 h post-exposure, and inflammatory markers were assessed. RESULTS: No evidence of neutrophilic airway inflammation was observed post-diesel, however, a small increase in myeloperoxidase was found in bronchoalveolar lavage (p = 0.032). We found no increases in allergic inflammatory cells. Reduced mast cell immunoreactivity for tryptase was observed in the epithelium (p = 0.013) parallel to a small decrease in bronchial wash stem cell factor (p = 0.033). DISCUSSION AND CONCLUSION: DE, at a dose previously shown to cause neutrophilic inflammation in healthy individuals, induced no neutrophilic inflammation in the lower airways of allergic rhinitics, consistent with previous reports in asthmatics. Although there was no increase in allergic inflammatory cell numbers, the reduction in tryptase in the epithelium may indicate mast cell degranulation. However, this occurred in the absence of allergic symptoms. These data do not provide a simplistic explanation of the sensitivity in rhinitics to traffic-related air pollution. The role of mast cells requires further investigation.


Subject(s)
Air Pollutants/toxicity , Respiratory Mucosa/drug effects , Rhinitis, Allergic, Perennial/chemically induced , Vehicle Emissions/toxicity , Adult , Biomarkers/metabolism , Biopsy , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Bronchoscopy , Cytokines/genetics , Cytokines/metabolism , Double-Blind Method , Female , Gene Expression/drug effects , Humans , Male , Mast Cells/drug effects , Mast Cells/enzymology , Neutrophils/drug effects , Neutrophils/pathology , Peroxidase/analysis , Peroxidase/metabolism , RNA, Messenger/metabolism , Respiratory Mucosa/pathology , Rhinitis, Allergic , Rhinitis, Allergic, Perennial/immunology , Rhinitis, Allergic, Perennial/metabolism , Stem Cell Factor/analysis , Tryptases/metabolism , Young Adult
19.
Circulation ; 123(16): 1721-8, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21482966

ABSTRACT

BACKGROUND: In controlled human exposure studies, diesel engine exhaust inhalation impairs vascular function and enhances thrombus formation. The aim of the present study was to establish whether an exhaust particle trap could prevent these adverse cardiovascular effects in men. METHODS AND RESULTS: Nineteen healthy volunteers (mean age, 25±3 years) were exposed to filtered air and diesel exhaust in the presence or absence of a particle trap for 1 hour in a randomized, double-blind, 3-way crossover trial. Bilateral forearm blood flow and plasma fibrinolytic factors were assessed with venous occlusion plethysmography and blood sampling during intra-arterial infusion of acetylcholine, bradykinin, sodium nitroprusside, and verapamil. Ex vivo thrombus formation was determined with the use of the Badimon chamber. Compared with filtered air, diesel exhaust inhalation was associated with reduced vasodilatation and increased ex vivo thrombus formation under both low- and high-shear conditions. The particle trap markedly reduced diesel exhaust particulate number (from 150 000 to 300 000/cm(3) to 30 to 300/cm(3); P<0.001) and mass (320±10 to 7.2±2.0 µg/m(3); P<0.001), and was associated with increased vasodilatation, reduced thrombus formation, and an increase in tissue-type plasminogen activator release. CONCLUSIONS: Exhaust particle traps are a highly efficient method of reducing particle emissions from diesel engines. With a range of surrogate measures, the use of a particle trap prevents several adverse cardiovascular effects of exhaust inhalation in men. Given these beneficial effects on biomarkers of cardiovascular health, the widespread use of particle traps on diesel-powered vehicles may have substantial public health benefits and reduce the burden of cardiovascular disease.


Subject(s)
Air Pollutants/toxicity , Thrombosis/etiology , Thrombosis/prevention & control , Vehicle Emissions/prevention & control , Vehicle Emissions/toxicity , Acetylcholine/administration & dosage , Adult , Automobiles , Bradykinin/administration & dosage , Cross-Over Studies , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Humans , Male , Nitroprusside/administration & dosage , Plethysmography , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/administration & dosage , Verapamil/administration & dosage , Young Adult
20.
PLoS One ; 17(6): e0268746, 2022.
Article in English | MEDLINE | ID: mdl-35657943

ABSTRACT

BACKGROUND: Snus usage is commonly touted as a safer alternative to cigarette smoking. However, recent studies have demonstrated possible adverse cardiovascular effects in chronic snus users. The present study evaluates the effects of chronic snus use on vascular function by assessing central arterial stiffness and endothelial vasodilatory function in healthy chronic snus users as compared to matched non-users. METHODS AND RESULTS: Fifty healthy males (24 snus users, 26 age-matched controls) with a mean age of 44 years were included in the study. Arterial stiffness was assessed employing both pulse wave velocity and pulse wave analysis. Endothelial vasodilatory function was measured by venous occlusion plethysmography, utilizing intra-arterial administration of acetylcholine, glyceryl trinitrate and bradykinin to further gauge endothelium-dependent and -independent vasodilatory function. Arterial stiffness was significantly higher in chronic snus users as compared to controls: pulse wave velocity [m/s]: 6.6±0.8 vs 7.1±0.9 resp. (p = 0.026), augmentation index corrected for heart rate [%]: 0.1±13.2 vs 7.3±7.8 resp. (p = 0.023). Endothelial independent vasodilation, i.e. the reaction to glyceryl trinitrate, was significantly lower in snus users as measured by venous occlusion plethysmography. CONCLUSIONS: The results of this study show an increased arterial stiffness and an underlying endothelial dysfunction in daily snus users as compared to matched non-tobacco controls. These findings indicate that long-term use of snus may alter the function of the endothelium and therefore reinforces the assertion that chronic snus use is correlated to an increased risk of development of cardiovascular disease.


Subject(s)
Tobacco, Smokeless , Vascular Stiffness , Adult , Endothelium , Endothelium, Vascular , Humans , Male , Nitroglycerin/pharmacology , Pulse Wave Analysis/methods , Vascular Stiffness/physiology
SELECTION OF CITATIONS
SEARCH DETAIL