Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Appl Environ Microbiol ; 89(1): e0163222, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36602304

ABSTRACT

Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is a major threat to vegetable crops in Madagascar. For more effective disease management, surveys were carried out in the main vegetable production areas of the country, leading to the collection of 401 new RSSC isolates. Phylogenetic assignment of the isolates revealed a high prevalence of phylotype I sequevar 18. This result contrasts sharply with the epidemiological pattern of RSSC in neighboring islands, including Reunion Island, Comoros, Mayotte, Mauritius, Rodrigues, and the Seychelles, where phylotype I sequevar 31 is widespread. Molecular typing characterization of the Malagasy isolates allowed the identification of 96 haplotypes. Some are found in various plots located in different provinces, which suggests that they were probably disseminated via infected plant material. To find out a potential explanation for the observed epidemiological pattern, we examined the capacity of the Malagasy strains to produce bacteriocin. Interestingly, the highly prevalent genetic lineages I-18 produce bacteriocins that are active against all the genetic lineages present in the country. This work sheds light on the potential impact of bacteriocins in the epidemiology of Malagasy RSSC. IMPORTANCE Knowledge of the epidemiology of a plant pathogen is essential to develop effective control strategies. This study focuses on the epidemiological pattern of Ralstonia pseudosolanacearum phylotype I populations responsible for bacterial wilt in Madagascar. We identified, with the newly collected isolates in three provinces, four genetic lineages probably propagated via infected plant material in Madagascar. We revealed that the epidemiological situation in Madagascar contrasts with that of neighboring Indian Ocean islands. Interestingly, our study on the bacteriocin-producing capacity of Malagasy isolates revealed a correlation between the inhibitory activity of the producing strains and the observed epidemiology. These results suggested that the epidemiology of plant pathogens may be impacted by bacteriocin production.


Subject(s)
Bacteriocins , Ralstonia solanacearum , Phylogeny , Madagascar/epidemiology , Bacteriocins/genetics , Prevalence
2.
Phytopathology ; 113(3): 423-435, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36399027

ABSTRACT

The increasing requirement for developing tools enabling fine strain traceability responsible for epidemics is tightly linked with the need to understand factors shaping pathogen populations and their environmental interactions. Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is one of the most important plant diseases in tropical and subtropical regions. Sadly, little, outdated, or no information on its epidemiology is reported in the literature, although alarming outbreaks are regularly reported as disasters. A large set of phylotype I isolates (n = 2,608) was retrieved from diseased plants in fields across the Southwest Indian Ocean (SWIO) and Africa. This collection enabled further assessment of the epidemiological discriminating power of the previously published RS1-MLVA14 scheme. Thirteen markers were validated and characterized as not equally informative. Most had little infra-sequevar polymorphism, and their performance depended on the sequevar. Strong correlation was found with a previous multilocus sequence typing scheme. However, 2 to 3% of sequevars were not correctly assigned through endoglucanase gene sequence. Discriminant analysis of principal components (DAPC) revealed four groups with strong phylogenetic relatedness to sequevars 31, 33, and 18. Phylotype I-31 isolates were highly prevalent in the SWIO and Africa, but their dissemination pathways remain unclear. Tanzania and Mauritius showed the greatest diversity of RSSC strains, as the four DAPC groups were retrieved. Mauritius was the sole territory harboring a vast phylogenetic diversity and all DAPC groups. More research is still needed to understand the high prevalence of phylotype I-31 at such a large geographic scale.


Subject(s)
Plant Diseases , Ralstonia solanacearum , Molecular Epidemiology , Phylogeny , Indian Ocean , Plant Diseases/microbiology , Tanzania
3.
Environ Microbiol ; 21(8): 3140-3152, 2019 08.
Article in English | MEDLINE | ID: mdl-31209989

ABSTRACT

An evolution experiment with the bacterial plant pathogen Ralstonia solanacearum revealed that several adaptive mutations conferring enhanced fitness in plants arose in the efpR gene encoding a regulator of virulence and metabolic functions. In this study, we found that an efpR mutant systematically displays colonies with two morphotypes: the type S ('smooth', similar to the wild type) and the type EV ('efpR variant'). We demonstrated that the efpH gene, a homologue of efpR, plays a key role in the control of phenotypic heterogeneity, the ΔefpR-ΔefpH double mutant being stably locked into the EV type. Using mixed infection assays, we demonstrated that the type EV is metabolically more proficient than the type S and displays fitness gain in specific environments, whereas the type S has a better fitness into the plant environment. We provide evidence that this efpR-dependent phenotypic heterogeneity is a general feature of strains of the R. solanacearum species complex and could occur in natural conditions. This study highlights the potential role of phenotypic heterogeneity in this plant pathogen as an adaptive trait to changing environments.


Subject(s)
Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Bacterial Proteins/genetics , Directed Molecular Evolution , Genes, Regulator , Solanum lycopersicum/microbiology , Mutation , Phenotype , Ralstonia solanacearum/pathogenicity , Virulence/genetics , Virulence Factors/genetics
4.
New Phytol ; 219(1): 391-407, 2018 07.
Article in English | MEDLINE | ID: mdl-29677397

ABSTRACT

Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences. We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome). The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis. This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.


Subject(s)
Host-Pathogen Interactions/genetics , Transcription Activator-Like Effectors/genetics , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity , Brassica/microbiology , Genome, Bacterial , Phylogeny , Plant Diseases/microbiology
5.
Appl Environ Microbiol ; 83(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-28003195

ABSTRACT

Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is considered one of the most harmful plant diseases in the world. Special attention should be paid to R. pseudosolanacearum phylotype I due to its large host range, its worldwide distribution, and its high evolutionary potential. So far, the molecular epidemiology and population genetics of this bacterium are poorly understood. Until now, the genetic structure of the RSSC has been analyzed on the worldwide and regional scales. Emerging questions regarding evolutionary forces in RSSC adaptation to hosts now require genetic markers that are able to monitor RSSC field populations. In this study, we aimed to evaluate the multilocus variable-number tandem-repeat analysis (MLVA) approach for its ability to discriminate genetically close phylotype I strains and for population genetics studies. We developed a new MLVA scheme (MLVA-7) allowing us to genotype 580 R. pseudosolanacearum phylotype I strains extracted from susceptible and resistant hosts and from different habitats (stem, soil, and rhizosphere). Based on specificity, polymorphism, and the amplification success rate, we selected seven fast-evolving variable-number tandem-repeat (VNTR) markers. The newly developed MLVA-7 scheme showed higher discriminatory power than the previously published MLVA-13 scheme when applied to collections sampled from the same location on different dates and to collections from different locations on very small scales. Our study provides a valuable tool for fine-scale monitoring and microevolution-related study of R. pseudosolanacearum phylotype I populations.IMPORTANCE Understanding the evolutionary dynamics of adaptation of plant pathogens to new hosts or ecological niches has become a key point for the development of innovative disease management strategies, including durable resistance. Whereas the molecular mechanisms underlying virulence or pathogenicity changes have been studied thoroughly, the population genetics of plant pathogen adaptation remains an open, unexplored field, especially for plant-pathogenic bacteria. MLVA has become increasingly popular for epidemiosurveillance and molecular epidemiology studies of plant pathogens. However, this method has been used mostly for genotyping and identification on a regional or global scale. In this study, we developed a new MLVA scheme, targeting phylotype I of the soilborne Ralstonia solanacearum species complex (RSSC), specifically to address the bacterial population genetics on the field scale. Such a MLVA scheme, based on fast-evolving loci, may be a tool of choice for field experimental evolution and spatial genetics studies.


Subject(s)
Evolution, Molecular , Genotype , Minisatellite Repeats/genetics , Phylogeny , Ralstonia solanacearum/classification , Ralstonia solanacearum/genetics , Adaptation, Biological/genetics , DNA, Bacterial , Epidemiological Monitoring , Genetic Markers , Genetic Variation/genetics , Molecular Epidemiology , Molecular Typing/methods , Multigene Family , Plant Diseases/microbiology , Plant Stems/microbiology , Polymorphism, Genetic , Ralstonia solanacearum/isolation & purification , Ralstonia solanacearum/pathogenicity , Rhizosphere , Sequence Analysis, DNA , Soil Microbiology , Species Specificity , Virulence
6.
BMC Genomics ; 14: 658, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24069909

ABSTRACT

BACKGROUND: Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas. RESULTS: We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS genes specific to X. oryzae pv. oryzicola or Xanthomonas sacchari. CONCLUSIONS: This study revealed the significant potential of the genus Xanthomonas to produce new non-ribosomally synthesized peptides. Interestingly, this biosynthetic potential seems to be specific to strains of Xanthomonas associated with monocotyledonous plants, suggesting a putative involvement of non-ribosomally synthesized peptides in plant-bacteria interactions.


Subject(s)
Computational Biology/methods , Genome, Bacterial/genetics , Peptide Biosynthesis, Nucleic Acid-Independent/genetics , Peptides/metabolism , Xanthomonas/genetics , Amino Acid Sequence , Computer Simulation , Fatty Acids/biosynthesis , Genes, Bacterial , Genetic Loci/genetics , Multigene Family , Physical Chromosome Mapping , Plants/microbiology , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Xanthomonas/enzymology
7.
BMC Genomics ; 14: 761, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24195767

ABSTRACT

BACKGROUND: Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. RESULTS: Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. CONCLUSIONS: This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.


Subject(s)
Flagella/genetics , Genetic Fitness , Plant Diseases/microbiology , Xanthomonas/genetics , Base Sequence , Evolution, Molecular , Fabaceae/genetics , Fabaceae/growth & development , Fabaceae/microbiology , Flagella/physiology , Genome, Bacterial , Phylogeny , Plant Diseases/genetics , Seeds/genetics , Seeds/microbiology , Sequence Analysis, DNA , Xanthomonas/classification , Xanthomonas/pathogenicity
8.
BMC Genomics ; 13: 658, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23171051

ABSTRACT

BACKGROUND: Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa-another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity. RESULTS: Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the "artillery" of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing that X. albilineans has a reduced artillery compared to other pathogenic Xanthomonas species. Particular attention has therefore been given to genomic features specific to X. albilineans making it more capable of evading sugarcane surveillance systems or resisting sugarcane defense systems. CONCLUSIONS: This study confirms that X. albilineans is a highly distinctive species within the genus Xanthomonas, and opens new perpectives towards a greater understanding of the pathogenicity of this destructive sugarcane pathogen.


Subject(s)
Genome, Bacterial/genetics , Saccharum/microbiology , Virulence Factors/genetics , Xanthomonas/pathogenicity , Xylem/microbiology , ATP-Binding Cassette Transporters/genetics , Adhesins, Bacterial/genetics , Base Sequence , Chromosome Mapping , Cluster Analysis , Genes, Bacterial/genetics , Immunoblotting , Inverted Repeat Sequences/genetics , Models, Genetic , Molecular Sequence Data , Nucleic Acid Amplification Techniques/methods , Phylogeny , Quorum Sensing/genetics , Sequence Analysis, DNA , Signal Transduction/genetics , Species Specificity , Xanthomonas/genetics
9.
Appl Environ Microbiol ; 78(2): 371-84, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22101042

ABSTRACT

Xanthomonas arboricola is a complex bacterial species which mainly attacks fruit trees and is responsible for emerging diseases in Europe. It comprises seven pathovars (X. arboricola pv. pruni, X. arboricola pv. corylina, X. arboricola pv. juglandis, X. arboricola pv. populi, X. arboricola pv. poinsettiicola, X. arboricola pv. celebensis, and X. arboricola pv. fragariae), each exhibiting characteristic disease symptoms and distinct host specificities. To better understand the factors underlying this ecological trait, we first assessed the phylogenetic relationships among a worldwide collection of X. arboricola strains by sequencing the housekeeping gene rpoD. This analysis revealed that strains of X. arboricola pathovar populi are divergent from the main X. arboricola cluster formed by all other strains. Then, we investigated the distribution of 53 type III effector (T3E) genes in a collection of 57 X. arboricola strains that are representative of the main X. arboricola cluster. Our results showed that T3E repertoires vary greatly between X. arboricola pathovars in terms of size. Indeed, X. arboricola pathovars pruni, corylina, and juglandis, which are responsible for economically important stone fruit and nut diseases in Europe, harbored the largest T3E repertoires, whereas pathovars poinsettiicola, celebensis, and fragariae harbored the smallest. We also identified several differences in T3E gene content between X. arboricola pathovars pruni, corylina, and juglandis which may account for their differing host specificities. Further, we examined the allelic diversity of eight T3E genes from X. arboricola pathovars. This analysis revealed very limited allelic variations at the different loci. Altogether, the data presented here provide new insights into the evolution of pathogenicity and host range of X. arboricola and are discussed in terms of emergence of new diseases within this bacterial species.


Subject(s)
Bacterial Proteins/genetics , Genetic Variation , Virulence Factors/genetics , Xanthomonas/genetics , Xanthomonas/pathogenicity , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA-Directed RNA Polymerases/genetics , Europe , Host Specificity , Molecular Sequence Data , Phylogeny , Plants/microbiology , Sequence Analysis, DNA , Xanthomonas/classification
10.
Mol Plant Microbe Interact ; 24(2): 246-59, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20955079

ABSTRACT

Xanthomonas albilineans is the causal agent of sugarcane leaf scald. Interestingly, this bacterium, which is not known to be insect or animal associated, possesses a type III secretion system (T3SS) belonging to the injectisome family Salmonella pathogenicity island 1 (SPI-1). The T3SS SPI-1 of X. albilineans shares only low similarity with other available T3SS SPI-1 sequences. Screening of a collection of 128 plant-pathogenic bacteria revealed that this T3SS SPI-1 is present in only two species of Xanthomonas: X. albilineans and X. axonopodis pv. phaseoli. Inoculation of sugarcane with knockout mutants showed that this system is not required by X. albilineans to spread within xylem vessels and to cause disease symptoms. This result was confirmed by the absence of this T3SS SPI-1 in an X. albilineans strain isolated from diseased sugarcane. To investigate the importance of the T3SS SPI-1 during the life cycle of X. albilineans, we analyzed T3SS SPI-1 sequences from 11 strains spanning the genetic diversity of this species. No nonsense mutations or frameshifting indels were observed in any of these strains, suggesting that the T3SS SPI-1 system is maintained within the species X. albilineans. Evolutionary features of T3SS SPI-1 based on phylogenetic, recombination, and selection analyses are discussed in the context of the possible functional importance of T3SS SPI-1 in the ecology of X. albilineans.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Plant Leaves/microbiology , Saccharum/microbiology , Xanthomonas/genetics , Xanthomonas/metabolism , Xylem/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Genomics , Host-Pathogen Interactions , Phylogeny
11.
PLoS One ; 15(12): e0242846, 2020.
Article in English | MEDLINE | ID: mdl-33290390

ABSTRACT

The Ralstonia solanacearum species complex (RSSC), composed of three species and four phylotypes, are globally distributed soil-borne bacteria with a very broad host range. In 2009, a devastating potato bacterial wilt outbreak was declared in the central highlands of Madagascar, which reduced the production of vegetable crops including potato, eggplant, tomato and pepper. A molecular epidemiology study of Malagasy RSSC strains carried out between 2013 and 2017 identified R. pseudosolanacearum (phylotypes I and III) and R. solanacearum (phylotype II). A previously published population biology analysis of phylotypes II and III using two MultiLocus Variable Number of Tandem Repeats Analysis (MLVA) schemes revealed an emergent epidemic phylotype II (sequevar 1) group and endemic phylotype III isolates. We developed an optimized MLVA scheme (RS1-MLVA14) to characterize phylotype I strains in Madagascar to understand their genetic diversity and structure. The collection included isolates from 16 fields of different Solanaceae species sampled in Analamanga and Itasy regions (highlands) in 2013 (123 strains) and in Atsinanana region (lowlands) in 2006 (25 strains). Thirty-one haplotypes were identified, two of them being particularly prevalent: MT007 (30.14%) and MT004 (16.44%) (sequevar 18). Genetic diversity analysis revealed a significant contrasting level of diversity according to elevation and sampling region. More diverse at low altitude than at high altitude, the Malagasy phylotype I isolates were structured in two clusters, probably resulting from different historical introductions. Interestingly, the most prevalent Malagasy phylotype I isolates were genetically distant from regional and worldwide isolates. In this work, we demonstrated that the RS1-MLVA14 scheme can resolve differences from regional to field scales and is thus suited for deciphering the epidemiology of phylotype I populations.


Subject(s)
Bacterial Typing Techniques , Genetic Variation , Multilocus Sequence Typing , Phylogeny , Ralstonia/classification , Ralstonia/genetics , Tandem Repeat Sequences/genetics , Genotype
12.
BMC Genomics ; 10: 616, 2009 Dec 17.
Article in English | MEDLINE | ID: mdl-20017926

ABSTRACT

BACKGROUND: The Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based on phylogenetic analyses with rRNA sequences. RESULTS: The complete genome of X. albilineans was sequenced and annotated. X. albilineans, which is not known to be insect-vectored, also has a reduced genome and does not possess hrp genes. Phylogenetic analysis using X. albilineans genomic sequences showed that X. fastidiosa belongs to the Xanthomonas group. Order of divergence of the Xanthomonadaceae revealed that X. albilineans and X. fastidiosa experienced a convergent reductive genome evolution during their descent from the progenitor of the Xanthomonas genus. Reductive genome evolutions of the two xylem-limited Xanthomonadaceae were compared in light of their genome characteristics and those of obligate animal symbionts and pathogens. CONCLUSION: The two xylem-limited Xanthomonadaceae, during their descent from a common ancestral parent, experienced a convergent reductive genome evolution. Adaptation to the nutrient-poor xylem elements and to the cloistered environmental niche of xylem vessels probably favoured this convergent evolution. However, genome characteristics of X. albilineans differ from those of X. fastidiosa and obligate animal symbionts and pathogens, indicating that a distinctive process was responsible for the reductive genome evolution in this pathogen. The possible role in genome reduction of the unique toxin albicidin, produced by X. albilineans, is discussed.


Subject(s)
Evolution, Molecular , Genome, Bacterial/genetics , Xanthomonadaceae/genetics , Xanthomonas/genetics , Xylem/microbiology , Models, Genetic , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal/genetics , Xanthomonadaceae/classification , Xanthomonas/classification
13.
Appl Environ Microbiol ; 74(10): 3295-301, 2008 May.
Article in English | MEDLINE | ID: mdl-18359831

ABSTRACT

Fluorescent amplified fragment length polymorphism revealed that strains of Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans are genetically distinct and can be grouped into four genetic lineages. Four suppression subtractive hybridizations were then performed to isolate DNA fragments present in these bean pathogens and absent from closely related xanthomonads. Virulence gene candidates were identified such as homologs of hemagglutinins, TonB-dependent receptors, zinc-dependent metalloproteases, type III effectors, and type IV secretion system components. Unexpectedly, homologs of the type III secretion apparatus components (SPI-1 family), usually reported in animal pathogens and insect symbionts, were also detected.


Subject(s)
Bacterial Proteins/genetics , Genetic Variation , Membrane Transport Proteins/genetics , Virulence Factors/genetics , Xanthomonas/genetics , Amplified Fragment Length Polymorphism Analysis , Cluster Analysis , Genes, Bacterial , Genotype , Nucleic Acid Hybridization/methods , Phylogeny , Xanthomonas/pathogenicity
14.
Mol Plant Pathol ; 19(11): 2459-2472, 2018 11.
Article in English | MEDLINE | ID: mdl-30073750

ABSTRACT

To deploy durable plant resistance, we must understand its underlying molecular mechanisms. Type III effectors (T3Es) and their recognition play a central role in the interaction between bacterial pathogens and crops. We demonstrate that the Ralstonia solanacearum species complex (RSSC) T3E ripAX2 triggers specific resistance in eggplant AG91-25, which carries the major resistance locus EBWR9. The eggplant accession AG91-25 is resistant to the wild-type R. pseudosolanacearum strain GMI1000, whereas a ripAX2 defective mutant of this strain can cause wilt. Notably, the addition of ripAX2 from GMI1000 to PSS4 suppresses wilt development, demonstrating that RipAX2 is an elicitor of AG91-25 resistance. RipAX2 has been shown previously to induce effector-triggered immunity (ETI) in the wild relative eggplant Solanum torvum, and its putative zinc (Zn)-binding motif (HELIH) is critical for ETI. We show that, in our model, the HELIH motif is not necessary for ETI on AG91-25 eggplant. The ripAX2 gene was present in 68.1% of 91 screened RSSC strains, but in only 31.1% of a 74-genome collection comprising R. solanacearum and R. syzygii strains. Overall, it is preferentially associated with R. pseudosolanacearum phylotype I. RipAX2GMI1000 appears to be the dominant allele, prevalent in both R. pseudosolanacearum and R. solanacearum, suggesting that the deployment of AG91-25 resistance could control efficiently bacterial wilt in the Asian, African and American tropics. This study advances the understanding of the interaction between RipAX2 and the resistance genes at the EBWR9 locus, and paves the way for both functional genetics and evolutionary analyses.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Disease Resistance , Ecotype , Plant Diseases/microbiology , Ralstonia solanacearum/physiology , Solanum melongena/immunology , Solanum melongena/microbiology , Amino Acid Sequence , Bacterial Proteins/chemistry , Conserved Sequence , Genetic Complementation Test , Phylogeny , Plant Immunity , Plant Roots/microbiology , Protein Domains , Ralstonia solanacearum/growth & development , Ralstonia solanacearum/pathogenicity , Virulence , Zinc Fingers
15.
Front Plant Sci ; 8: 1290, 2017.
Article in English | MEDLINE | ID: mdl-28785275

ABSTRACT

Bacterial diseases of bananas and enset have not received, until recently, an equal amount of attention compared to other major threats to banana production such as the fungal diseases black leaf streak (Mycosphaerella fijiensis) and Fusarium wilt (Fusarium oxysporum f. sp. cubense). However, bacteria cause significant impacts on bananas globally and management practices are not always well known or adopted by farmers. Bacterial diseases in bananas and enset can be divided into three groups: (1) Ralstonia-associated diseases (Moko/Bugtok disease caused by Ralstonia solanacearum and banana blood disease caused by R. syzygii subsp. celebesensis); (2) Xanthomonas wilt of banana and enset, caused by Xanthomonas campestris pv. musacearum and (3) Erwinia-associated diseases (bacterial head rot or tip-over disease Erwinia carotovora ssp. carotovora and E. chrysanthemi), bacterial rhizome and pseudostem wet rot (Dickeya paradisiaca formerly E. chrysanthemi pv. paradisiaca). Other bacterial diseases of less widespread importance include: bacterial wilt of abaca, Javanese vascular wilt and bacterial fingertip rot (probably caused by Ralstonia spp., unconfirmed). This review describes global distribution, symptoms, pathogenic diversity, epidemiology and the state of the art for sustainable disease management of the major bacterial wilts currently affecting banana and enset.

16.
Front Plant Sci ; 8: 2209, 2017.
Article in English | MEDLINE | ID: mdl-29354148

ABSTRACT

The genetic and phenotypic diversity of the Ralstonia solanacearum species complex, which causes bacterial wilt to Solanacae, was assessed in 140 strains sampled from the main vegetable production areas of the Mayotte island. Only phylotype I strains were identified in the five surveyed areas. The strains were distributed into the following 4 sequevars: I-31 (85.7%), I-18 (5.0%), I-15 (5.7%), and I-46 (3.6%). The central area of Mayotte was the most diverse region, harboring 4 sequevars representing 47.1% of the collected strains. Virulence tests were performed under field and controlled conditions on a set of 10 tomato breeding line accessions and two commercial hybrid tomato cultivars. The strains belonging to sequevar I-31 showed the highest virulence on the tomatoes (pathotypes T-2 and T-3), whereas sequevars I-18, I-15, and I-46 were grouped into the weakly T-1 pathotype. When the tomato accessions were challenged in the field and growth chambers, the highest level of resistance were observed from the genetically related accessions Hawaii 7996, R3034, TML46, and CLN1463. These accessions were considered moderately to highly resistant to representative strains of the most virulent and prevalent sequevar (I-31). Interestingly, the Platinum F1 cultivar, which was recently commercialized in Mayotte for bacterial wilt resistance, was highly or moderately resistant to all strains. This study represents the first step in the rationalization of resistance deployment strategies against bacterial wilt-causing strains in Mayotte.

17.
Front Plant Sci ; 8: 2258, 2017.
Article in English | MEDLINE | ID: mdl-29379515

ABSTRACT

The Ralstonia solanacearum species complex (RSSC) is a highly diverse cluster of bacterial strains found worldwide, many of which are destructive and cause bacterial wilt (BW) in a wide range of host plants. In 2009, potato production in Madagascar was dramatically affected by several BW epidemics. Controlling this disease is critical for Malagasy potato producers. The first important step toward control is the characterization of strains and their putative origins. The genetic diversity and population structure of the RSSC were investigated in the major potato production areas of the Highlands. A large collection of strains (n = 1224) was assigned to RSSC phylotypes based on multiplex polymerase chain reaction (PCR). Phylotypes I and III have been present in Madagascar for a long time but rarely associated with major potato BW outbreaks. The marked increase of BW prevalence was found associated with phylotype IIB sequevar 1 (IIB-1) strains (n = 879). This is the first report of phylotype IIB-1 strains in Madagascar. In addition to reference strains, epidemic IIB-1 strains (n = 255) were genotyped using the existing MultiLocus Variable-Number Tandem Repeat Analysis (MLVA) scheme RS2-MLVA9, producing 31 haplotypes separated into two related clonal complexes (CCs). One major CC included most of the worldwide haplotypes distributed across wide areas. A regional-scale investigation suggested that phylotype IIB-1 strains were introduced and massively spread via latently infected potato seed tubers. Additionally, the genetic structure of phylotype IIB-1 likely resulted from a bottleneck/founder effect. The population structure of phylotype III, described here for the first time in Madagascar, exhibited a different pattern. Phylotype III strains (n = 217) were genotyped using the highly discriminatory MLVA scheme RS3-MLVA16. High genetic diversity was uncovered, with 117 haplotypes grouped into 11 CCs. Malagasy phylotype III strains were highly differentiated from continental African strains, suggesting no recent migration from the continent. Overall, population structure of phylotype III involves individual small CCs that correlate to restricted geographic areas in Madagascar. The evidence suggests, if at all, that African phylotype III strains are not efficiently transmitted through latently infected potato seed tubers.

18.
Front Plant Sci ; 8: 2139, 2017.
Article in English | MEDLINE | ID: mdl-29312394

ABSTRACT

Epidemiological surveillance of plant pathogens based on genotyping methods is mandatory to improve disease management strategies. In the Southwest Indian Ocean (SWIO) islands, bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC) is hampering the production of many sustainable and cash crops. To thoroughly analyze the genetic diversity of the RSSC in the SWIO, we performed a wide sampling survey (in Comoros, Mauritius, Reunion, Rodrigues, and Seychelles) that yielded 1,704 isolates from 129 plots, mainly from solanaceous crops. Classification of the isolates to the four major RSSC phylogenetic groups, named phylotypes, showed that 87% were phylotype I, representing the most prevalent strain in each of the SWIO islands. Additionally, 9.7% were phylotype II, and 3.3% were phylotype III; however, these isolates were found only in Reunion. Phylotype IV (2 isolates), known to be restricted to Indonesia-Australia-Japan, was reported in Mauritius, representing the first report of this group in the SWIO. Partial endoglucanase (egl) sequencing, based on the selection of 145 isolates covering the geographic and host diversity in the SWIO (also including strains from Mayotte and Madagascar), revealed 14 sequevars with Reunion and Mauritius displaying the highest sequevar diversity. Through a multilocus sequence analysis (MLSA) scheme based on the partial sequencing of 6 housekeeping genes (gdhA, gyrB, rplB, leuS, adk, and mutS) and 1 virulence-associated gene (egl), we inferred the phylogenetic relationships between these 145 SWIO isolates and 90 worldwide RSSC reference strains. Phylotype I was the most recombinogenic, although recombination events were detected among all phylotypes. A multilocus sequence typing (MLST) scheme identified 29 sequence types (STs) with variable geographic distributions in the SWIO. The outstanding epidemiologic feature was STI-13 (sequevar I-31), which was overrepresented in the SWIO and obviously reflected a lineage strongly adapted to the SWIO environment. A goeBURST analysis identified eight clonal complexes (CCs) including SWIO isolates, four CCs being geographically restricted to the SWIO, and four CCs being widespread beyond the SWIO. This work, which highlights notable genetic links between African and SWIO strains, provides a basis for the epidemiological surveillance of RSSC and will contribute to BW management in the SWIO.

19.
Phytopathology ; 96(4): 346-55, 2006 Apr.
Article in English | MEDLINE | ID: mdl-18943416

ABSTRACT

ABSTRACT Molecular analyses of early disease events require infected plant tissue in which the pathogen is present in high quantities and interacts with the plant in a way found in the field. In this study, a quantitative polymerase chain reaction (Q-PCR) assay was developed to determine an "infection ratio" of fungal to plant cells in infected tissues. This assay was used to evaluate four inoculation methods (spray, mist, dip, and sheath) as well as use of whole plants or excised parts. Fluorescence stereomicroscopy was used to follow individual lesions developing from appressoria to macroscopic symptoms. Disease progression and outcomes were documented from 24 to 96 h postinoculation (hpi), as well as effectiveness of Pi-ta-mediated resistance. Even at 96 hpi, fungus proliferated well ahead of visible plant damage, especially in veins. Developing lesions sometimes were surrounded by greener areas in detached leaves. Spray inoculation was not sufficient for detecting fungal gene expression in planta before 96 h. Alternatively, a leaf sheath assay produced infected tissues containing 10 to 30% fungal DNA by 34 h. Used together, Q-PCR quantification and fluorescence stereomicroscopy will facilitate studies of early plant invasion because infection density and fungal growth stages are directly observed, not assumed from incubation time.

20.
Genome Announc ; 4(1)2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26823572

ABSTRACT

Ralstonia solanacearum displays variability in its virulence to solanaceous crops. We report here the draft genome sequences of eight phylotype I strains and one phylotype III strain differing in virulence to the resistant eggplant genotype AG91-25. These data will allow the identification of virulence- and avirulence-related genes.

SELECTION OF CITATIONS
SEARCH DETAIL