Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Invest New Drugs ; 37(4): 711-721, 2019 08.
Article in English | MEDLINE | ID: mdl-30569245

ABSTRACT

Adenosine suppresses antitumor immune responses via A2a and A2b receptors expressed on intratumoral immune cells. This effect is mediated by increased cyclic adenosine 5'-monophosphate (AMP) levels and phosphorylation of cyclic AMP response element binding protein (CREB). We conducted a phase 1, placebo-controlled, single-ascending-dose (SAD) and multiple-ascending-dose (MAD) study to assess the safety, tolerability, pharmacokinetics (PK), including food effect (FE), and pharmacodynamics (PD) of oral AB928, a novel dual A2aR/A2bR antagonist, in healthy volunteers. AB928 doses between 10 and 200 mg once daily and 100 mg twice daily were evaluated. The study enrolled 85 subjects (randomized 3:1, AB928:placebo), 40 each in the SAD and MAD cohorts, and 5 in the FE cohort. AB928 was well tolerated up to the highest dose tested and did not affect any physiologic parameters potentially sensitive to adenosine inhibition. No safety concern was identified. The PK profile of AB928 was linear and dose-proportional, and a clear PK/PD correlation was demonstrated. Significant inhibition of adenosine receptor-mediated phosphorylated CREB was observed at peak plasma concentrations in all dose cohorts and at trough plasma concentrations in the higher-dose cohorts. AB928 plasma levels ≥1 µM were associated with ≥90% adenosine receptor inhibition. In the postprandial state, the rate of AB928 absorption decreased but the extent of absorption was unchanged. Together, these data support further clinical development of oral AB928 in cancer patients.


Subject(s)
Purinergic P1 Receptor Antagonists/administration & dosage , Administration, Oral , Adolescent , Adult , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Double-Blind Method , Female , Food-Drug Interactions , Healthy Volunteers , Humans , Male , Middle Aged , Purinergic P1 Receptor Antagonists/blood , Purinergic P1 Receptor Antagonists/pharmacokinetics , Young Adult
2.
Bioorg Med Chem Lett ; 25(23): 5546-50, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26526214

ABSTRACT

In this Letter, we report the continued optimization of the N-acyl-2-aminobenzimidazole series, focusing in particular on the N-alkyl substituent and 5-position of the benzimidazole based on the binding mode and the early SAR. These efforts led to the discovery of 16, a highly potent, selective, and orally bioavailable inhibitor of IRAK-4.


Subject(s)
Drug Discovery , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Benzimidazoles/chemistry , Enzyme Activation/drug effects , Molecular Structure , Protein Binding/drug effects , Protein Kinase Inhibitors/chemistry , Rats , Structure-Activity Relationship
3.
Mediators Inflamm ; 2015: 628340, 2015.
Article in English | MEDLINE | ID: mdl-26457007

ABSTRACT

While it has long been established that the chemokine receptor CCR9 and its ligand CCL25 are essential for the movement of leukocytes into the small intestine and the development of small-intestinal inflammation, the role of this chemokine-receptor pair in colonic inflammation is not clear. Toward this end, we compared colonic CCL25 protein levels in healthy individuals to those in patients with ulcerative colitis. In addition, we determined the effect of CCR9 pharmacological inhibition in the mdr1a(-/-) mouse model of ulcerative colitis. Colon samples from patients with ulcerative colitis had significantly higher levels of CCL25 protein compared to healthy controls, a finding mirrored in the mdr1a(-/-) mice. In the mdr1a(-/-) mice, CCR9 antagonists significantly decreased the extent of wasting and colonic remodeling and reduced the levels of inflammatory cytokines in the colon. These findings indicate that the CCR9:CCL25 pair plays a causative role in ulcerative colitis and suggest that CCR9 antagonists will provide a therapeutic benefit in patients with colonic inflammation.


Subject(s)
Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Receptors, CCR/antagonists & inhibitors , Receptors, CCR/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Chemokines, CC/genetics , Chemokines, CC/metabolism , Colitis, Ulcerative/genetics , Female , Humans , In Vitro Techniques , Mice , Mice, Knockout , Sulfonamides/therapeutic use
4.
J Am Soc Nephrol ; 25(2): 225-31, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24179165

ABSTRACT

Necrotizing and crescentic GN (NCGN) with a paucity of glomerular immunoglobulin deposits is associated with ANCA. The most common ANCA target antigens are myeloperoxidase (MPO) and proteinase 3. In a manner that requires activation of the alternative complement pathway, passive transfer of antibodies to mouse MPO (anti-MPO) induces a mouse model of ANCA NCGN that closely mimics human disease. Here, we confirm the importance of C5aR/CD88 in the mediation of anti-MPO-induced NCGN and report that C6 is not required. We further demonstrate that deficiency of C5a-like receptor (C5L2) has the reverse effect of C5aR/CD88 deficiency and results in more severe disease, indicating that C5aR/CD88 engagement enhances inflammation and C5L2 engagement suppresses inflammation. Oral administration of CCX168, a small molecule antagonist of human C5aR/CD88, ameliorated anti-MPO-induced NCGN in mice expressing human C5aR/CD88. These observations suggest that blockade of C5aR/CD88 might have therapeutic benefit in patients with ANCA-associated vasculitis and GN.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/prevention & control , Autoantigens/immunology , Glomerulonephritis/prevention & control , Peroxidase/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Administration, Oral , Animals , Complement C6/immunology , Complement Pathway, Alternative , Dose-Response Relationship, Drug , Gene Knock-In Techniques , Glomerulonephritis/complications , Glomerulonephritis/immunology , Hematuria/etiology , Hematuria/prevention & control , Humans , Immunization, Passive , Leukocytes , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/immunology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Peroxidase/deficiency , Proteinuria/etiology , Proteinuria/prevention & control , Receptor, Anaphylatoxin C5a/deficiency , Receptor, Anaphylatoxin C5a/genetics , Receptors, Chemokine/deficiency , Receptors, Chemokine/genetics , Receptors, Chemokine/physiology , Recombinant Fusion Proteins , Urine/cytology
5.
Blood ; 120(7): 1449-57, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22618707

ABSTRACT

The chemokine CCL3/MIP-1α is a risk factor in the outcome of multiple myeloma (MM), particularly in the development of osteolytic bone disease. This chemokine, highly overexpressed by MM cells, can signal mainly through 2 receptors, CCR1 and CCR5, only 1 of which (CCR1) is responsive to CCL3 in human and mouse osteoclast precursors. CCR1 activation leads to the formation of osteolytic lesions and facilitates tumor growth. Here we show that formation of mature osteoclasts is blocked by the highly potent and selective CCR1 antagonist CCX721, an analog of the clinical compound CCX354. We also show that doses of CCX721 selected to completely inhibit CCR1 produce a profound decrease in tumor burden and osteolytic damage in the murine 5TGM1 model of MM bone disease. Similar effects were observed when the antagonist was used prophylactically or therapeutically, with comparable efficacy to that of zoledronic acid. 5TGM1 cells were shown to express minimal levels of CCR1 while secreting high levels of CCL3, suggesting that the therapeutic effects of CCX721 result from CCR1 inhibition on non-MM cells, most likely osteoclasts and osteoclast precursors. These results provide a strong rationale for further development of CCR1 antagonists for the treatment of MM and associated osteolytic bone disease.


Subject(s)
Chemokines/pharmacology , Chemokines/therapeutic use , Multiple Myeloma/drug therapy , Osteolysis/drug therapy , Receptors, CCR1/antagonists & inhibitors , Tumor Burden/drug effects , Administration, Oral , Animals , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cellular Microenvironment/drug effects , Chemokines/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Immunocompetence/drug effects , Inflammation/drug therapy , Inflammation/pathology , Mice , Mice, Inbred C57BL , Models, Biological , Monocytes/drug effects , Monocytes/metabolism , Multiple Myeloma/complications , Multiple Myeloma/pathology , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Osteolysis/complications , Osteolysis/pathology , Rats , Receptors, CCR1/metabolism
6.
Bioorg Med Chem Lett ; 22(11): 3786-90, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22542009

ABSTRACT

A novel series of benzenesulfonanilide derivatives of 11ß-HSD1 inhibitors were identified via modification of the sulfonamide core of the arylsulfonylpiperazine lead structures. The synthesis, in vitro biological evaluation, and structure-activity relationship of these compounds are presented. Optimization of this series rapidly resulted in the discovery of compounds (S)-10 and (S)-23 (11ß-HSD1 SPA IC(50)=1.8 and 1.4 nM, respectively).


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Anilides/chemistry , Aniline Compounds/chemistry , Enzyme Inhibitors/chemistry , Piperazines/chemistry , Sulfonamides/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/pharmacology , Anilides/chemical synthesis , Aniline Compounds/chemical synthesis , Aniline Compounds/pharmacology , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Molecular Conformation , Piperazine , Piperazines/chemical synthesis , Piperazines/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Transfection
7.
Mol Cancer Ther ; 21(6): 948-959, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35405741

ABSTRACT

T cells play a critical role in the control of cancer. The development of immune checkpoint blockers (ICB) aimed at enhancing antitumor T-cell responses has revolutionized cancer treatment. However, durable clinical benefit is observed in only a subset of patients, prompting research efforts to focus on strategies that target multiple inhibitory signals within the tumor microenvironment (TME) to limit tumor evasion and improve patient outcomes. Adenosine has emerged as a potent immune suppressant within the TME, and CD73 is the major enzyme responsible for its extracellular production. CD73 can be co-opted within the TME to impair T-cell-mediated antitumor immunity and promote tumor growth. To target this pathway and block the formation of adenosine, we designed a novel, selective, and potent class of small-molecule inhibitors of CD73, including AB680 (quemliclustat), which is currently being tested in patients with cancer. AB680 effectively restored T-cell proliferation, cytokine secretion, and cytotoxicity that were dampened by the formation of immunosuppressive adenosine by CD73. Furthermore, in an allogeneic mixed lymphocyte reaction where CD73-derived adenosine had a dominant suppressive effect in the presence of PD-1 blockade, AB680 restored T-cell activation and function. Finally, in a preclinical mouse model of melanoma, AB680 inhibited CD73 in the TME and increased the antitumor activity of PD-1 blockade. Collectively, these data provide a rationale for the inhibition of CD73 with AB680 in combination with ICB, such as anti-PD-1, to improve cancer patient outcomes.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Adenosine/metabolism , Adenosine/pharmacology , Adenosine/therapeutic use , Animals , Humans , Immune Checkpoint Inhibitors , Melanoma/drug therapy , Mice , Programmed Cell Death 1 Receptor/metabolism , Tumor Microenvironment
8.
J Med Chem ; 65(2): 1418-1444, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34672584

ABSTRACT

Phosphoinositide-3-kinase γ (PI3Kγ) is highly expressed in immune cells and promotes the production and migration of inflammatory mediators. The inhibition of PI3Kγ has been shown to repolarize the tumor immune microenvironment to a more inflammatory phenotype, thereby controlling immune suppression in cancer. Herein, we report the structure-based optimization of an early lead series of pyrazolopyrimidine isoindolinones, which culminated in the discovery of highly potent and isoform-selective PI3Kγ inhibitors with favorable drug-like properties. X-ray cocrystal structure analysis, molecular docking studies, and detailed structure-activity relationship investigations resulted in the identification of the optimal amide and isoindolinone substituents to achieve a desirable combination of potency, selectivity, and metabolic stability. Preliminary in vitro studies indicate that inhibition of PI3Kγ with compound 56 results in a significant immune response by increasing pro-inflammatory cytokine gene expression in M1 macrophages.


Subject(s)
Amides/chemistry , Class Ib Phosphatidylinositol 3-Kinase/chemistry , Drug Design , Drug Discovery , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Animals , Humans , Male , Molecular Docking Simulation , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 21(18): 5206-9, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21840217

ABSTRACT

A bis-amide antagonist of Smoothened, a seven-transmembrane receptor in the Hedgehog signaling pathway, was discovered via high throughput screening. In vitro and in vivo experiments demonstrated that the bis-amide was susceptible to N-acyl transferase mediated amide scission. Several bioisosteric replacements of the labile amide that maintained in vitro potency were identified and shown to be metabolically stable in vitro and in vivo.


Subject(s)
Acyltransferases/antagonists & inhibitors , Amides/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Acyltransferases/metabolism , Amides/chemistry , Amides/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , High-Throughput Screening Assays , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
11.
J Med Chem ; 64(1): 845-860, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33399453

ABSTRACT

Solid tumors are often associated with high levels of extracellular ATP. Ectonucleotidases catalyze the sequential hydrolysis of ATP to adenosine, which potently suppresses T-cell and NK-cell functions via the adenosine receptors (A2a and A2b). The ectonucleotidase CD73 catalyzes the conversion of AMP to adenosine. Thus, increased CD73 enzymatic activity in the tumor microenvironment is a potential mechanism for tumor immune evasion and has been associated with poor prognosis in the clinic. CD73 inhibition is anticipated to restore immune function by skirting this major mechanism of adenosine generation. We have developed a series of potent and selective methylenephosphonic acid CD73 inhibitors via a structure-based design. Key binding interactions of the known inhibitor adenosine-5'-(α,ß-methylene)diphosphate (AMPCP) with hCD73 provided the foundation for our early designs. The structure-activity relationship study guided by this structure-based design led to the discovery of 4a, which exhibits excellent potency against CD73, exquisite selectivity against related ectonucleotidases, and a favorable pharmacokinetic profile.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Phosphorous Acids/chemistry , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Adenosine/metabolism , Binding Sites , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Molecular Dynamics Simulation , Phosphorous Acids/metabolism , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 20(12): 3618-22, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20493695

ABSTRACT

The Hedgehog (Hh) signaling pathway regulates cell proliferation and differentiation in developing tissues, and abnormal activation of the Hh pathway has been linked to several tumor subsets. As a transducer of Hh signaling, the GPCR-like protein Smoothened (Smo) is a promising target for disruption of unregulated Hh signaling. A series of 1-amino-4-arylphthalazines was developed as potent and orally bioavailable inhibitors of Smo. A representative compound from this class demonstrated significant tumor volume reduction in a mouse medulloblastoma model.


Subject(s)
Phthalazines/chemistry , Phthalazines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Cell Line, Tumor , Cytochrome P-450 Enzyme System/drug effects , Drug Design , Hedgehog Proteins , Humans , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Mice , Phthalazines/chemical synthesis , Signal Transduction , Smoothened Receptor
13.
Bioorg Med Chem Lett ; 20(23): 7071-5, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20971000

ABSTRACT

In this communication, human 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) inhibitory activities of a novel series of diarylsulfones are described. Optimization of this series resulted in several highly potent 11ß-HSD1 inhibitors with excellent pharmacokinetic (PK) properties. Compound (S)-25 showed excellent efficacy in a non-human primate ex vivo pharmacodynamic model.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Sulfones/chemical synthesis , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Pharmacokinetics , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacokinetics
14.
J Med Chem ; 63(22): 13444-13465, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32786396

ABSTRACT

In the tumor microenvironment, unusually high concentrations of extracellular adenosine promote tumor proliferation through various immunosuppressive mechanisms. Blocking adenosine production by inhibiting nucleotide-metabolizing enzymes, such as ectonucleotidases CD73 and CD39, represents a promising therapeutic strategy that may synergize with other immuno-oncology mechanisms and chemotherapies. Emerging small-molecule ectonucleotidase inhibitors have recently entered clinical trials. This Perspective will outline challenges, strategies, and recent advancements in targeting this class with small-molecule inhibitors, including AB680, the first small-molecule CD73 inhibitor to enter clinical development. Specific case studies, including structure-based drug design and lead optimization, will be outlined. Preclinical data on these molecules and their ability to enhance antitumor immunity will be discussed.


Subject(s)
5'-Nucleotidase/metabolism , Apyrase/metabolism , Drug Delivery Systems/methods , Enzyme Inhibitors/metabolism , Nucleotides/metabolism , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Apyrase/antagonists & inhibitors , Apyrase/chemistry , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , Humans , Nucleotides/antagonists & inhibitors , Nucleotides/chemistry , Protein Structure, Secondary
15.
ACS Med Chem Lett ; 11(11): 2244-2252, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33214836

ABSTRACT

The successful application of immunotherapy in the treatment of cancer relies on effective engagement of immune cells in the tumor microenvironment. Phosphoinositide 3-kinase γ (PI3Kγ) is highly expressed in tumor-associated macrophages, and its expression levels are associated with tumor immunosuppression and growth. Selective inhibition of PI3Kγ offers a promising strategy in immuno-oncology, which has led to the development of numerous potent PI3Kγ inhibitors with variable selectivity profiles. To facilitate further investigation of the therapeutic potential of PI3Kγ inhibition, we required a potent and PI3Kγ-selective tool compound with sufficient metabolic stability for use in future in vivo studies. Herein, we describe some of our efforts to realize this goal through the systematic study of SARs within a series of 7-azaindole-based PI3Kγ inhibitors. The large volume of data generated from this study helped guide our subsequent lead optimization efforts and will inform further development of PI3Kγ-selective inhibitors for use in immunomodulation.

16.
J Med Chem ; 63(19): 11235-11257, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32865410

ABSTRACT

The selective inhibition of the lipid signaling enzyme PI3Kγ constitutes an opportunity to mediate immunosuppression and inflammation within the tumor microenvironment but is difficult to achieve due to the high sequence homology across the class I PI3K isoforms. Here, we describe the design of a novel series of potent PI3Kγ inhibitors that attain high isoform selectivity through the divergent projection of substituents into both the "selectivity" and "alkyl-induced" pockets within the adenosine triphosphate (ATP) binding site of PI3Kγ. These efforts have culminated in the discovery of 5-[2-amino-3-(1-methyl-1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidin-5-yl]-2-[(1S)-1-cyclopropylethyl]-7-(trifluoromethyl)-2,3-dihydro-1H-isoindol-1-one (4, IC50 = 0.064 µM, THP-1 cells), which displays >600-fold selectivity for PI3Kγ over the other class I isoforms and is a promising step toward the identification of a clinical development candidate. The structure-activity relationships identified throughout this campaign demonstrate that greater γ-selectivity can be achieved by inhibitors that occupy an "alkyl-induced" pocket and possess bicyclic hinge-binding motifs capable of forming more than one hydrogen bond to the hinge region of PI3Kγ.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase/drug effects , Drug Design , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Animals , Crystallography, X-Ray , Humans , Molecular Docking Simulation , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship
17.
J Med Chem ; 63(8): 3935-3955, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32212732

ABSTRACT

CD73 is an extracellular mediator of purinergic signaling. When upregulated in the tumor microenvironment, CD73 has been implicated in the inhibition of immune function through overproduction of adenosine. Traditional efforts to inhibit CD73 have involved antibody therapy or the development of small molecules, the most potent of which mimic the acidic and ionizable structure of the enzyme's natural substrate, adenosine 5'-monophosphate (AMP). Here, we report the systematic discovery of a novel class of non-nucleotide CD73 inhibitors that are more potent than all other nonphosphonate inhibitor classes reported to date. These efforts have culminated in the discovery of 4-({5-[4-fluoro-1-(2H-indazol-6-yl)-1H-1,2,3-benzotriazol-6-yl]-1H-pyrazol-1-yl}methyl)benzonitrile (73, IC50 = 12 nM) and 4-({5-[4-chloro-1-(2H-indazol-6-yl)-1H-1,2,3-benzotriazol-6-yl]-1H-pyrazol-1-yl}methyl)benzonitrile (74, IC50 = 19 nM). Cocrystallization of 74 with human CD73 demonstrates a competitive binding mode. These compounds show promise for the improvement of drug-like character via the attenuation of the acidity and low membrane permeability inherent to known nucleoside inhibitors of CD73.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Drug Discovery/methods , Triazoles/chemistry , Triazoles/pharmacology , 5'-Nucleotidase/metabolism , Animals , Binding, Competitive/drug effects , Binding, Competitive/physiology , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Crystallography, X-Ray/methods , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans
18.
J Med Chem ; 63(20): 11448-11468, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32614585

ABSTRACT

Extracellular adenosine (ADO), present in high concentrations in the tumor microenvironment (TME), suppresses immune function via inhibition of T cell and NK cell activation. Intratumoral generation of ADO depends on the sequential catabolism of ATP by two ecto-nucleotidases, CD39 (ATP → AMP) and CD73 (AMP → ADO). Inhibition of CD73 eliminates a major pathway of ADO production in the TME and can reverse ADO-mediated immune suppression. Extensive interrogation of structure-activity relationships (SARs), structure-based drug design, and optimization of pharmacokinetic properties culminated in the discovery of AB680, a highly potent (Ki = 5 pM), reversible, and selective inhibitor of CD73. AB680 is further characterized by very low clearance and long half-lives across preclinical species, resulting in a PK profile suitable for long-acting parenteral administration. AB680 is currently being evaluated in phase 1 clinical trials. Initial data show AB680 is well tolerated and exhibits a pharmacokinetic profile suitable for biweekly (Q2W) iv-administration in human.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Drug Discovery/methods , Small Molecule Libraries/chemical synthesis , 5'-Nucleotidase/genetics , Animals , Binding Sites , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , Haplorhini , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , Models, Molecular , Protein Binding , Rats , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 19(6): 1797-801, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19217779

ABSTRACT

Discovery and optimization of a piperidyl benzamide series of 11beta-HSD1 inhibitors is described. This series was derived from a cyclohexyl benzamide lead structures to address PXR selectivity, high non-specific protein binding, poor solubility, limited in vivo exposure, and in vitro cytotoxicity issues observed with the cyclohexyl benzamide structures. These efforts led to the discovery of piperidyl benzamide 15 which features improved properties over the cyclohexyl benzamide derivatives.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Benzamides/chemical synthesis , Diabetes Mellitus, Type 2/drug therapy , Insulin/metabolism , Piperidines/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , Benzamides/pharmacology , Crystallography, X-Ray/methods , Drug Design , Hepatocytes/drug effects , Humans , Inhibitory Concentration 50 , Microsomes/metabolism , Models, Chemical , Molecular Structure , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL