Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pacing Clin Electrophysiol ; 40(2): 108-114, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27990645

ABSTRACT

BACKGROUND: Automated external defibrillators can provide life-saving therapies to treat ventricular fibrillation. We developed a prototype unit that can deliver a unique shock waveform produced by four independent capacitors that is delivered through two shock vectors, with the rationale of providing more robust shock pathways during emergent defibrillation. We describe the initial testing and feasibility of this unique defibrillation unit, features of which may enable downsizing of current defibrillator devices. METHODS: We tested our defibrillation unit in four large animal models (two canine and two swine) under general anesthesia. Experimental defibrillation thresholds (DFT) were obtained by delivery of a unique waveform shock pulse via a dual-vector pathway with four defibrillation pads (placed across the chest). DFTs were measured and compared with those of a commercially available biphasic defibrillator (Zoll M series, Zoll Medical, Chelmsford, MA, USA) tested in two different vectors. Shocks were delivered after 10 seconds of stable ventricular fibrillation and the output characteristics and shock outcome recorded. Each defibrillation series used a step-down to failure protocol to define the defibrillation threshold. RESULTS: A total of 96 shocks were delivered during ventricular fibrillation in four large animals. In comparison to the Zoll M series, which delivered a single-vector, biphasic shock, the energy required for successful defibrillation using the unique dual-vector biphasic waveform did not differ significantly (P = 0.65). CONCLUSIONS: Our early findings support the feasibility of a unique external defibrillation unit using a dual-vector biphasic waveform approach. This warrants further study to leverage this unique concept and work toward a miniaturized, portable shock delivery system.


Subject(s)
Defibrillators , Electrodes , Therapy, Computer-Assisted/instrumentation , Ventricular Fibrillation/prevention & control , Animals , Dogs , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Humans , Miniaturization , Pilot Projects , Swine , Technology Assessment, Biomedical , Therapy, Computer-Assisted/methods , Treatment Outcome
2.
J Cardiovasc Electrophysiol ; 27(9): 1078-85, 2016 09.
Article in English | MEDLINE | ID: mdl-27234884

ABSTRACT

BACKGROUND: We have previously shown that sympathetic ganglia stimulation via the renal vein rapidly increases blood pressure. This study further investigated the optimal target sites and effective energy levels for stimulation of the renal vasculatures and nearby sympathetic ganglia for rapid increase in blood pressure. METHODS: The pre-study protocol for endovascular stimulations included 2 minutes of stimulation (1-150 V and 10 pulses per second) and at least 2 minutes of rest during poststimulation. If blood pressure and/or heart rate were changed during the stimulation, time to return to baseline was allowed prior to the next stimulation. RESULTS: In 11 acute canine studies, we performed 85 renal artery, 30 renal vein, and 8 hepatic vasculature stimulations. The mean arterial pressure (MAP) rapidly increased during stimulation of renal artery (95 ± 18 mmHg vs. 103 ± 15 mmHg; P < 0.0001), renal vein (90 ± 16 mmHg vs. 102 ± 20 mmHg; P = 0.001), and hepatic vasculatures (74 ± 8 mmHg vs. 82 ± 11 mmHg; P = 0.04). Predictors of a significant increase in MAP were energy >10 V focused on the left renal artery, bilateral renal arteries, and bilateral renal veins (especially the mid segment). Overall, heart rate was unchanged, but muscle fasciculation was observed in 22.0% with an output >10 V (range 15-150 V). Analysis after excluding the stimulations that resulted in fasciculation yielded similar results to the main findings. CONCLUSIONS: Stimulation of intra-abdominal vasculatures promptly increased the MAP and thus may be a potential treatment option for hypotension in autonomic disorders. Predictors of optimal stimulation include energy delivery and the site of stimulation (for the renal vasculatures), which informs the design of subsequent research.


Subject(s)
Arterial Pressure , Autonomic Nervous System Diseases/therapy , Electric Stimulation Therapy/methods , Endovascular Procedures/methods , Ganglia, Sympathetic/physiopathology , Hypotension, Orthostatic/therapy , Vasodilation , Animals , Autonomic Nervous System Diseases/diagnosis , Autonomic Nervous System Diseases/physiopathology , Celiac Artery/innervation , Dogs , Electric Stimulation Therapy/instrumentation , Endovascular Procedures/instrumentation , Heart Rate , Hepatic Artery/innervation , Hepatic Veins/innervation , Hypotension, Orthostatic/diagnosis , Hypotension, Orthostatic/physiopathology , Male , Renal Artery/innervation , Renal Veins/innervation , Time Factors , Vascular Access Devices
3.
J Interv Card Electrophysiol ; 53(1): 105-113, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30008046

ABSTRACT

PURPOSE: To demonstrate the feasibility of directional percutaneous epicardial ablation using a partially insulated catheter. METHODS: Partially insulated catheter prototypes were tested in 12 (6 canine, 6 porcine) animal studies in two centers. Prototypes had interspersed windows to enable visualization of epicardial structures with ultrasound. Epicardial unipolar ablation and ablation between two electrodes was performed according to protocol (5-60 W power, 0-60 mls/min irrigation, 78 s mean duration). RESULTS: Of 96 epicardial ablation attempts, unipolar ablation was delivered in 53.1%. Electrogram evidence of ablation, when analyzable, occurred in 75 of 79 (94.9%) therapies. Paired pre/post-ablation pacing threshold (N = 74) showed significant increase in pacing threshold post-ablation (0.9 to 2.6 mA, P < .0001). Arrhythmias occurred in 18 (18.8%) therapies (11 ventricular fibrillation, 7 ventricular tachycardia), mainly in pigs (72.2%). Coronary artery visualization was variably successful. No phrenic nerve injury was noted during or after ablation. Furthermore, there were minimal pericardial changes with ablation. CONCLUSIONS: Epicardial ablation using a partially insulated catheter to confer epicardial directionality and protect the phrenic nerve seems feasible. Iterations with ultrasound windows may enable real-time epicardial surface visualization thus identifying coronary arteries at ablation sites. Further improvements, however, are necessary.


Subject(s)
Catheter Ablation/instrumentation , Equipment Design , Intraoperative Complications/prevention & control , Phrenic Nerve/injuries , Tachycardia, Ventricular/surgery , Animals , Area Under Curve , Cardiac Catheters , Catheter Ablation/methods , Disease Models, Animal , Dogs , Feasibility Studies , Female , Random Allocation , Sensitivity and Specificity , Swine , Tachycardia, Ventricular/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL