Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Biol Chem ; 297(6): 101330, 2021 12.
Article in English | MEDLINE | ID: mdl-34688667

ABSTRACT

CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-ß receptor (TGF-ßR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-ßR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-ßR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-ß, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.


Subject(s)
Receptors, Antigen, T-Cell/immunology , Receptors, Interleukin-6/immunology , Receptors, Transforming Growth Factor beta/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Cell Line , Cells, Cultured , Mice, Inbred C57BL , Signal Transduction , T-Lymphocytes, Regulatory/cytology , Th17 Cells/cytology
2.
Brain Behav Immun ; 74: 241-251, 2018 11.
Article in English | MEDLINE | ID: mdl-30217539

ABSTRACT

The chronic use of drugs that reduce the dopaminergic neurotransmission can cause a hyperkinetic movement disorder called tardive dyskinesia (TD). The pathophysiology of this disorder is not entirely understood but could involve oxidative and neuroinflammatory mechanisms. Cannabidiol (CBD), the major non-psychotomimetic compound present in Cannabis sativa plant, could be a possible therapeutic alternative for TD. This phytocannabinoid shows antioxidant, anti-inflammatory and antipsychotic properties and decreases the acute motor effects of classical antipsychotics. The present study investigated if CBD would attenuate orofacial dyskinesia, oxidative stress and inflammatory changes induced by chronic administration of haloperidol in mice. Furthermore, we verified in vivo and in vitro (in primary microglial culture) whether these effects would be mediated by PPARγ receptors. The results showed that the male Swiss mice treated daily for 21 days with haloperidol develop orofacial dyskinesia. Daily CBD administration before each haloperidol injection prevented this effect. Mice treated with haloperidol showed an increase in microglial activation and inflammatory mediators in the striatum. These changes were also reduced by CBD. On the other hand, the levels of the anti-inflammatory cytokine IL-10 increased in the striatum of animals that received CBD and haloperidol. Regarding oxidative stress, haloperidol induced lipid peroxidation and reduced catalase activity. This latter effect was attenuated by CBD. The combination of CBD and haloperidol also increased PGC-1α mRNA expression, a co-activator of PPARγ receptors. Pretreatment with the PPARγ antagonist, GW9662, blocked the behavioural effect of CBD in our TD model. CBD also prevented LPS-stimulated microglial activation, an effect that was also antagonized by GW9662. In conclusion, our results suggest that CBD could prevent haloperidol-induced orofacial dyskinesia by activating PPARγ receptors and attenuating neuroinflammatory changes in the striatum.


Subject(s)
Cannabidiol/pharmacology , Mastication/drug effects , Motor Activity/drug effects , PPAR gamma/metabolism , Animals , Antioxidants/metabolism , Antipsychotic Agents/therapeutic use , Behavior, Animal/drug effects , Brain/metabolism , Cannabidiol/metabolism , Corpus Striatum/metabolism , Dyskinesia, Drug-Induced/metabolism , Dyskinesias/drug therapy , Dyskinesias/metabolism , Female , Haloperidol/pharmacology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Oxidative Stress/drug effects , Primary Cell Culture , Superoxide Dismutase/metabolism , Tardive Dyskinesia/chemically induced , Tardive Dyskinesia/drug therapy
3.
Eur Neuropsychopharmacol ; 89: 28-40, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39332147

ABSTRACT

Maternal infection and stress exposure, especially during childhood and adolescence, have been implicated as risk factors for schizophrenia. Both insults induce an exacerbated inflammatory response, which could mediate disturbance of neurodevelopmental processes and, ultimately, malfunctioning of neural systems observed in this disorder. Thus, anti-inflammatory drugs, such as PPARγ agonists, may potentially be used to prevent the development of schizophrenia. Microglia culture was prepared from the offspring of saline or poly(I:C)-injected mice. The cells were pretreated with pioglitazone and then, stimulated by LPS. Proinflammatory mediators and phagocytic activity were measured. Also, pregnant rats were injected with saline or poly(I:C) on GD17. The offspring were subjected to footshock during adolescence and subsequently injected with pioglitazone or vehicle. At adulthood, behavior and dopaminergic activity were evaluated. Pioglitazone reduced proinflammatory mediators induced by poly(I:C) microglia stimulated by LPS without affecting their decreased phagocytic activity. The PPARγ agonist also prevented the emergence of social and cognitive impairments, as well as attenuated the increased number of spontaneously active dopamine neurons in the VTA, observed in both males and females from poly(I:C) and stress group. Therefore, pioglitazone could potentially prevent the emergence of the schizophrenia-like alterations induced by the two-hit model via reduction of microglial activation.

4.
Hypertension ; 81(4): 776-786, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240165

ABSTRACT

BACKGROUND: Aldosterone has been described to initiate cardiovascular diseases by triggering exacerbated sterile vascular inflammation. The functions of CCL5 (C-C motif chemokine ligand 5) and its receptor CCR5 (C-C motif chemokine receptor 5) are well known in infectious diseases, their contributions to aldosterone-induced vascular injury and hypertension remain unknown. METHODS: We analyzed the vascular profile, blood pressure, and renal damage in wild-type (CCR5+/+) and CCR5 knockout (CCR5-/-) mice treated with aldosterone (600 µg/kg per day for 14 days) while receiving 1% saline to drink. Vascular function was analyzed in aorta and mesenteric arteries, blood pressure was measured by telemetry and renal injury and inflammation were analyzed via histology and flow cytometry. Endothelial cells were used to study the molecular signaling whereby CCL5 induces endothelial dysfunction. RESULTS: Aldosterone treatment resulted in exaggerated CCL5 circulating levels and vascular CCR5 expression in CCR5+/+ mice accompanied by endothelial dysfunction, hypertension, and renal inflammation and damage. CCR5-/- mice were protected from these aldosterone-induced effects. Mechanistically, we demonstrated that CCL5 increased NOX1 (NADPH oxidase 1) expression, reactive oxygen species formation, NFκB (nuclear factor kappa B) activation, and inflammation and reduced NO production in isolated endothelial cells. These effects were abolished by antagonizing CCR5 with Maraviroc. Finally, aorta incubated with CCL5 displayed severe endothelial dysfunction, which is prevented by blocking NOX1, NFκB, or CCR5. CONCLUSIONS: Our data demonstrate that CCL5/CCR5, through activation of NFκB and NOX1, is critically involved in aldosterone-induced vascular and renal damage and hypertension placing CCL5 and CCR5 as potential therapeutic targets for conditions characterized by aldosterone excess.


Subject(s)
Aldosterone , Chemokine CCL5 , Hypertension , Receptors, CCR5 , Animals , Mice , Aldosterone/pharmacology , Endothelial Cells/metabolism , Hypertension/chemically induced , Hypertension/metabolism , Inflammation , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Chemokine CCL5/genetics , Chemokine CCL5/metabolism
5.
Cell Rep ; 41(13): 111897, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36577385

ABSTRACT

Psoriasis is an inflammatory skin disease characterized by keratinocyte proliferation and inflammatory cell infiltration induced by IL-17. However, the molecular mechanism through which IL-17 signaling in keratinocytes triggers skin inflammation remains not fully understood. Pyruvate kinase M2 (PKM2), a glycolytic enzyme, has been shown to have non-metabolic functions. Here, we report that PKM2 mediates IL-17A signaling in keratinocytes triggering skin psoriatic inflammation. We find high expression of PKM2 in the epidermis of psoriatic patients and mice undergoing psoriasis models. Specific depletion of PKM2 in keratinocytes attenuates the development of experimental psoriasis by reducing the production of pro-inflammatory mediators. Mechanistically, PKM2 forms a complex with Act1 and TRAF6 regulating NF-κB transcriptional signaling downstream of the IL-17 receptor. As IL-17 also induces PKM2 expression in keratinocytes, our findings reveal a sustained signaling circuit critical for the psoriasis-driving effects of IL-17A, suggesting that PKM2 is a potential therapeutic target for psoriasis.


Subject(s)
Dermatitis , Psoriasis , Mice , Animals , Interleukin-17/metabolism , Pyruvate Kinase/metabolism , Keratinocytes/metabolism , Psoriasis/chemically induced , Inflammation/metabolism , Skin/metabolism
6.
J Leukoc Biol ; 108(4): 1215-1223, 2020 10.
Article in English | MEDLINE | ID: mdl-32745297

ABSTRACT

Macrophages are highly plastic cells, responding to diverse environmental stimuli to acquire different functional phenotypes. Signaling through MAPKs has been reported to regulate the differentiation of macrophages, but the role of ERK5 in IL-4-mediated M2 macrophage differentiation is still unclear. Here, we showed that the ERK5 signaling pathway plays a critical role in IL-4-induced M2 macrophage differentiation. Pharmacologic inhibition of MEK5, an upstream activator of ERK5, markedly reduced the expression of classical M2 markers, such as Arg-1, Ym-1, and Fizz-1, as well as the production of M2-related chemokines and cytokines, CCL22, CCL17, and IGF-1 in IL-4-stimulated macrophages. Moreover, pharmacologic inhibition of ERK5 also decreased the expression of several M2 markers induced by IL-4. In accordance, myeloid cell-specific Erk5 depletion (Erk5∆mye ), using LysMcre /Erk5f/f mice, confirmed the involvement of ERK5 in IL-4-induced M2 polarization. Mechanistically, the inhibition of ERK5 did not affect STAT3 or STAT6 phosphorylation, suggesting that ERK5 signaling regulates M2 differentiation in a STAT3 and STAT6-independent manner. However, genetic deficiency or pharmacologic inhibition of the MEK5/ERK5 pathway reduced the expression of c-Myc in IL-4-activated macrophages, which is a critical transcription factor involved in M2 differentiation. Our study thus suggests that the MEK5/ERK5 signaling pathway is crucial in IL-4-induced M2 macrophage differentiation through the induction of c-Myc expression.


Subject(s)
Cell Differentiation/immunology , Interleukin-4/immunology , MAP Kinase Kinase 5/immunology , MAP Kinase Signaling System/immunology , Macrophages/immunology , Mitogen-Activated Protein Kinase 7/immunology , Proto-Oncogene Proteins c-myc/immunology , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Cell Differentiation/genetics , Gene Expression Regulation/immunology , Interleukin-4/genetics , MAP Kinase Kinase 5/genetics , MAP Kinase Signaling System/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Mitogen-Activated Protein Kinase 7/genetics , Proto-Oncogene Proteins c-myc/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/immunology
7.
Basic Clin Pharmacol Toxicol ; 112(4): 215-21, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23035741

ABSTRACT

Citronellol (CT) is a monoterpenoid alcohol present in the essential oil of many medicinal plants, such as Cymbopogon citratus. We evaluated the antinociceptive effects of CT on orofacial nociception in mice and investigated the central pathway involved in the effect. Male Swiss mice were pretreated with CT (25, 50 and 100 mg/kg, i.p.), morphine (5 mg/kg, i.p.) or vehicle (saline + tween 80 0.2%). Thirty minutes after the treatment, we injected formalin (20 µl, 2%), capsaicin (20 µl, 2.5 µg) or glutamate (40 µl, 25 µM) into the right limb. For the action in the CNS, ninety minutes after the treatment, the animals were perfused, the brains collected, crioprotected, cut in a criostate and submitted in an immunofluorescence protocol for Fos protein. CT produced significant (p < 0.01) antinociceptive effect, in all doses, in the formalin, capsaicin and glutamate tests. The immunofluorescence showed that the CT activated significantly (p < 0.05) the olfactory bulb, the piriform cortex, the retrosplenial cortex and the periaqueductal grey of the CNS. Together, our results provide first-time evidence that this monoterpene attenuates orofacial pain at least, in part, through an activation of CNS areas, mainly retrosplenial cortex and periaqueductal grey.


Subject(s)
Analgesics/pharmacology , Brain/drug effects , Facial Pain/drug therapy , Monoterpenes/pharmacology , Acyclic Monoterpenes , Animals , Behavior, Animal/drug effects , Brain/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Fluorescent Antibody Technique , Male , Mice , Monoterpenes/administration & dosage , Morphine/administration & dosage , Morphine/pharmacology , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Proto-Oncogene Proteins c-fos/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL