Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
AAPS PharmSciTech ; 23(7): 230, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35978154

ABSTRACT

The present investigation aims to develop and explore mannosylated lipid-based carriers to deliver an anti-HIV drug, Etravirine (TMC) and Selenium nanoparticles (SeNPs), to the HIV reservoirs via the mannose receptor. The successful mannosylation was evaluated by the change in zeta potential and lectin binding assay using fluorescence microscopy. Electron microscopy and scattering studies were employed to study the structure and surface of the nanocarrier system. The presence of selenium at the core-shell of the nanocarrier system was confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray analysis. Further, the in vitro anti-HIV1 efficacy was assessed using HIV1 infected TZM-bl cells followed by in vivo biodistribution studies to evaluate distribution to various reservoirs of HIV. The results exhibited higher effectiveness and a significant increase in the therapeutic index as against the plain drug. The confocal microscopy and flow cytometry studies exhibited the efficient uptake of the coumarin-6 tagged respective formulations. The protective effect of nano selenium toward oxidative stress was evaluated in rats, demonstrating the potential of the lipidic nanoparticle-containing selenium in mitigating oxidative stress in all the major organs. The in vivo biodistribution assessment in rats showed a 12.44, 8.05 and 9.83-fold improvement in the brain, ovary, and lymph node biodistribution, respectively as compared with plain TMC. Delivery of such a combination via mannosylated nanostructured lipid carriers could be an efficient approach for delivering drugs to reservoirs of HIV while simultaneously reducing the oxidative stress induced by such long-term therapies by co-loading Nano-Selenium.


Subject(s)
Nanoparticles , Selenium , Animals , Drug Carriers/chemistry , Female , Lipids/chemistry , Mannose/chemistry , Nanoparticles/chemistry , Nitriles , Particle Size , Pyrimidines , Rats , Selenium/chemistry , Tissue Distribution
2.
AAPS PharmSciTech ; 20(8): 317, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31605252

ABSTRACT

The present work aims to develop folate-targeted paclitaxel liposome (F-PTX-LIP), which will selectively target tumor cells overexpressing folate receptor (FR) and leave normal cells. Liposomes were prepared by thin-film hydration method followed by post-insertion of synthesized ligand 1,2-distearoyl-sn-glycero-phosphoethanolamine-polyethyleneglycol 2000-folic acid (DSPE-PEG2000-FA) on the outer surface of the liposome. The synthesized ligand was evaluated for in vivo acute toxicity in Balb/c mice. Developed liposomal formulations were characterized using transmission electron microscopy (TEM) and small-angle neutron scattering (SANS). We have investigated the effect of ligand number on cell uptake and cytotoxicity by confocal laser scanning microscopy (CLSM), competitive inhibition and 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Compared to lung adenocarcinoma cells (A549), uptake in human ovarian carcinoma cells (SKOV3) was 2.2- and 1.2-fold higher for liposome with 480 and 240 ligand number respectively. Competitive inhibition experiment shows that prior incubation of SKOV3 cells with free folic acid significantly reduced the cell uptake of F-PTX-LIP with 480 ligand number (480 F-PTX-LIP) by 2.6-fold. 480 F-PTX-LIP displays higher cytotoxicity than free drug and PTX liposome. Moreover, it specifically targets the cells with higher folate receptor expression. Optimized 480 F-PTX-LIP formulation can be potentially useful for the treatment of folate receptor-positive tumors.


Subject(s)
Folic Acid/metabolism , Ovarian Neoplasms/drug therapy , Paclitaxel/administration & dosage , Animals , Cell Line, Tumor , Female , Humans , Ligands , Liposomes , Mice , Mice, Inbred BALB C , Ovarian Neoplasms/chemistry , Phosphatidylethanolamines/administration & dosage , Polyethylene Glycols/administration & dosage
3.
Nanomedicine (Lond) ; 18(9): 713-741, 2023 04.
Article in English | MEDLINE | ID: mdl-37309754

ABSTRACT

Aims: Panitumumab (anti-Erb)-conjugated polycaprolactone (PCL) nanoparticles loaded with bosutinib (BTNB) were used to develop a targeted drug-delivery system for colon cancer cells. Materials & methods: Using carbodiimide coupling, anti-Erb was conjugated to BTNB-loaded PCL nanoparticles. Dynamic light scattering, scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, x-ray diffraction and thermogravimetric analysis were used to analyze nanoparticles. Results: According to in vitro studies, anti-Erb-BTNB-PCL nanoparticles inhibited HCT116 cells more than BTNB alone. Cell arrest at different phases was examined for apoptotic potential. An in vivo efficacy study showed that anti-Erb-BTNB-PCL nanoparticles could target tumors selectively. Conclusion: Anti-Erb-conjugated BTNB nanoparticles could specifically target colon cancer.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Nanoparticles , Humans , Panitumumab , Polyesters/chemistry , Nanoparticles/chemistry , Colorectal Neoplasms/drug therapy , ErbB Receptors
4.
Polymers (Basel) ; 14(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35956641

ABSTRACT

Temperature-induced, rapid changes in the viscosity and reproducible 3-D structure formation makes thermos-sensitive hydrogels an ideal delivery system to act as a cell scaffold or a drug reservoir. Moreover, the hydrogels' minimum invasiveness, high biocompatibility, and facile elimination from the body have gathered a lot of attention from researchers. This review article attempts to present a complete picture of the exhaustive arena, including the synthesis, mechanism, and biomedical applications of thermosensitive hydrogels. A special section on intellectual property and marketed products tries to shed some light on the commercial potential of thermosensitive hydrogels.

5.
Int J Pharm ; 607: 120986, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34389421

ABSTRACT

There is a dire need for dual-long-acting therapy that could simultaneously target different stages of the HIV life cycle and providing a dual-prolonged strategy for improved anti-HIV therapy while reducing oxidative stress associated with the prolonged treatment. Thus, in the present work, nanostructured lipid carriers of Etravirine were developed and modified with nano-selenium. The dual-loaded nanocarrier system was fabricated using the double emulsion solvent evaporation method, further screened and optimized using the design of experiments methodology. The spherical core-shell type of a system was confirmed with an electron microscope and small-angle neutron scattering, while XPS confirmed the presence of selenium at the core-shell of the nanocarrier. In vitro assessment against HIV1 (R5 and X4 strains) infected TZM-bl cells exhibited higher efficacy for the dual-loaded nanocarrier system than the plain drug, which could be attributed to the synergistic effect of the nano-selenium. Confocal microscopy and flow cytometry results exhibited enhanced uptake in TZM-bl cells compared to plain drug. A significant increase of GSH, SOD, CAT was observed in animals administered with the dual-loaded nanocarrier system containing nano-selenium, suggesting the protective potential of the lipidic nanoparticle containing the nano-selenium. Improvement in the in vivo pharmacokinetic parameters was also observed, along with a higher accumulation of the dual-loaded nanocarrier in remote HIV reservoir organs like the brain, ovary, and lymph node. The results suggest the potential of a dual-loaded formulation for synergistically targeting the HIV1 infection while simultaneously improving the intracellular anti-oxidant balance for improving a prolonged anti-HIV therapy.


Subject(s)
Nanoparticles , Nanostructures , Selenium , Animals , Drug Carriers , Female , Lipids , Nitriles , Particle Size , Pyrimidines
SELECTION OF CITATIONS
SEARCH DETAIL