Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytother Res ; 35(3): 1187-1217, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33025667

ABSTRACT

Ficus genus is typically tropical plants and is among the earliest fruit trees cultivated by humans. Ficus carica L. is the common fig, Ficus benjamina L. is the weeping fig, and Ficus pumila L. is the creeping fig. These species are commonly used in traditional medicine for a wide range of diseases and contain rich secondary metabolites that have shown diverse applications. This comprehensive review describes for Ficus genus the phytochemical compounds, traditional uses and contemporary pharmacological activities such as antioxidant, cytotoxic, antimicrobial, anti-inflammatory, antidiabetic, antiulcer, and anticonvulsant. An extended survey of the current literature (Science Direct, Scopus, PubMed) has been carried out as part of the current work. The trends in the phytochemistry, pharmacological mechanisms and activities of Ficus genus are overviewed in this manuscript: antimicrobial, antidiabetic, anti-inflammatory and analgesic activity, antiseizure and anti-Parkinson's diseases, cytotoxic and antioxidant. Health-promoting effects, recent human clinical studies, safety and adverse effects of Ficus plants also are covered. The medical potential and long-term pharmacotherapeutic use of the genus Ficus along with no serious reported adverse events, suggests that it can be considered as being safe.


Subject(s)
Ficus/chemistry , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Humans , Phytochemicals/pharmacology , Plant Extracts/pharmacology
2.
Phytother Res ; 35(5): 2487-2499, 2021 May.
Article in English | MEDLINE | ID: mdl-33587320

ABSTRACT

The development and spread of resistance to antimicrobial drugs is hampering the management of microbial infectious and wound healing processes. Curcumin is the most active and effective constituent of Curcuma longa L., also known as turmeric, and has a very long and strong history of medicinal value for human health and skincare. Curcumin has been proposed as strong antimicrobial potentialities and many attempts have been made to determine its ability to conjointly control bacterial growth and promote wound healing. However, low aqueous solubility, poor tissue absorption and short plasma half-life due its rapid metabolism needs to be solved for made curcumin formulations as suitable treatment for wound healing. New curcumin nanoformulations have been designed to solve the low bioavailability problem of curcumin. Thus, in the present review, the therapeutic applications of curcumin nanoformulations for antimicrobial and wound healing purposes is described.

3.
Cell Mol Biol (Noisy-le-grand) ; 64(8): 27-34, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29981688

ABSTRACT

Medicinal and food plants as well as their bioactive fractions have been used by diverse human cultures since ancient times. These plants provide multiple health benefits because of the presence of a plethora of phytochemicals including phenylpropanoids, isoprenoids, alkaloids, sulphated compounds, peptides and polysaccharides that are responsible for various biological activities such as anticancer, antioxidant, antifungal, antibacterial, anti-dysenteric, anti-inflammatory, antiulcer, anti-hypertensive and anticoagulant properties. The genus Rumex includes edible and medicinal herbs belonging to buckwheat (Polygonaceae) family, consisting of about 200 species rich in phenylpropanoids and anthraquinones. Some Rumex species have exhibited health-promoting effects and have been used as traditional foods and herbal remedies, though a limited information has been documented on their specific biological properties. Therefore, this survey aimed at reviewing the Rumex species with documented biological activity, focusing on preclinical evidences on their efficacy and safety.


Subject(s)
Phytochemicals/therapeutic use , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Rumex/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/therapeutic use , Humans , Medicine, Traditional , Phytochemicals/chemistry , Phytotherapy
4.
Article in English | MEDLINE | ID: mdl-35251206

ABSTRACT

Urtica dioica belongs to the Urticaceae family and is found in many countries around the world. This plant contains a broad range of phytochemicals, such as phenolic compounds, sterols, fatty acids, alkaloids, terpenoids, flavonoids, and lignans, that have been widely reported for their excellent pharmacological activities, including antiviral, antimicrobial, antihelmintic, anticancer, nephroprotective, hepatoprotective, cardioprotective, antiarthritis, antidiabetic, antiendometriosis, antioxidant, anti-inflammatory, and antiaging effects. In this regard, this review highlights fresh insight into the medicinal use, chemical composition, pharmacological properties, and safety profile of U. dioica to guide future works to thoroughly estimate their clinical value.

5.
Front Physiol ; 11: 694, 2020.
Article in English | MEDLINE | ID: mdl-32714204

ABSTRACT

Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL