Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Pathol ; 259(1): 81-92, 2023 01.
Article in English | MEDLINE | ID: mdl-36287571

ABSTRACT

Cancer of unknown primary (CUP) is a syndrome defined by clinical absence of a primary cancer after standardised investigations. Gene expression profiling (GEP) and DNA sequencing have been used to predict primary tissue of origin (TOO) in CUP and find molecularly guided treatments; however, a detailed comparison of the diagnostic yield from these two tests has not been described. Here, we compared the diagnostic utility of RNA and DNA tests in 215 CUP patients (82% received both tests) in a prospective Australian study. Based on retrospective assessment of clinicopathological data, 77% (166/215) of CUPs had insufficient evidence to support TOO diagnosis (clinicopathology unresolved). The remainder had either a latent primary diagnosis (10%) or clinicopathological evidence to support a likely TOO diagnosis (13%) (clinicopathology resolved). We applied a microarray (CUPGuide) or custom NanoString 18-class GEP test to 191 CUPs with an accuracy of 91.5% in known metastatic cancers for high-medium confidence predictions. Classification performance was similar in clinicopathology-resolved CUPs - 80% had high-medium predictions and 94% were concordant with pathology. Notably, only 56% of the clinicopathology-unresolved CUPs had high-medium confidence GEP predictions. Diagnostic DNA features were interrogated in 201 CUP tumours guided by the cancer type specificity of mutations observed across 22 cancer types from the AACR Project GENIE database (77,058 tumours) as well as mutational signatures (e.g. smoking). Among the clinicopathology-unresolved CUPs, mutations and mutational signatures provided additional diagnostic evidence in 31% of cases. GEP classification was useful in only 13% of cases and oncoviral detection in 4%. Among CUPs where genomics informed TOO, lung and biliary cancers were the most frequently identified types, while kidney tumours were another identifiable subset. In conclusion, DNA and RNA profiling supported an unconfirmed TOO diagnosis in one-third of CUPs otherwise unresolved by clinicopathology assessment alone. DNA mutation profiling was the more diagnostically informative assay. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Neoplasms, Unknown Primary , Humans , Neoplasms, Unknown Primary/diagnosis , Neoplasms, Unknown Primary/genetics , Neoplasms, Unknown Primary/pathology , Prospective Studies , Retrospective Studies , Australia , Gene Expression Profiling , Sequence Analysis, DNA , RNA
2.
J Clin Invest ; 129(5): 1940-1945, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30835257

ABSTRACT

BRAF and CRAF are critical components of the MAPK signaling pathway which is activated in many cancer types. In approximately 1% of melanomas, BRAF or CRAF are activated through structural arrangements. We describe here a metastatic melanoma with a GOLGA4-RAF1 fusion and pathogenic variants in CTNNB1 and CDKN2A. Anti-CTLA4/anti-PD1 combination immunotherapy failed to control tumor progression. In the absence of other actionable variants the patient was administered MEK inhibitor therapy on the basis of its potential action against RAF1 fusions. This resulted in a profound and clinically significant response. We demonstrated that GOLGA4-RAF1 expression was associated with ERK activation, elevated expression of the RAS/RAF downstream co-effector ETV5, and a high Ki67 index. These findings provide a rationale for the dramatic response to targeted therapy. This study shows that thorough molecular characterization of treatment-resistant cancers can identify therapeutic targets and personalize management, leading to improved patient outcomes.


Subject(s)
Autoantigens/genetics , MAP Kinase Kinase 1/antagonists & inhibitors , Melanoma/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-raf/genetics , Skin Neoplasms/genetics , Aged , Alleles , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorodeoxyglucose F18/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasm Metastasis , Oncogene Proteins, Fusion/metabolism , Positron-Emission Tomography , beta Catenin/metabolism
3.
Elife ; 62017 01 18.
Article in English | MEDLINE | ID: mdl-28098558

ABSTRACT

Communication between neighboring tissues plays a central role in guiding organ morphogenesis. During heart tube assembly, interactions with the adjacent endoderm control the medial movement of cardiomyocytes, a process referred to as cardiac fusion. However, the molecular underpinnings of this endodermal-myocardial relationship remain unclear. Here, we show an essential role for platelet-derived growth factor receptor alpha (Pdgfra) in directing cardiac fusion. Mutation of pdgfra disrupts heart tube assembly in both zebrafish and mouse. Timelapse analysis of individual cardiomyocyte trajectories reveals misdirected cells in zebrafish pdgfra mutants, suggesting that PDGF signaling steers cardiomyocytes toward the midline during cardiac fusion. Intriguingly, the ligand pdgfaa is expressed in the endoderm medial to the pdgfra-expressing myocardial precursors. Ectopic expression of pdgfaa interferes with cardiac fusion, consistent with an instructive role for PDGF signaling. Together, these data uncover a novel mechanism through which endodermal-myocardial communication can guide the cell movements that initiate cardiac morphogenesis.


Subject(s)
Cell Movement , Heart/embryology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Platelet-Derived Growth Factor/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction , Animals , Gene Knockout Techniques , Mice , Morphogenesis , Receptor, Platelet-Derived Growth Factor alpha/genetics , Time-Lapse Imaging , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL