Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Article in English | MEDLINE | ID: mdl-38991774

ABSTRACT

BACKGROUND AND PURPOSE: Autosomal dominant polycystic kidney disease (ADPKD) patients develop cysts in the kidneys, liver, spleen, pancreas, prostate and arachnoid spaces. In addition, spinal meningeal diverticula have been reported. To determine whether spinal meningeal diverticula are associated with ADPKD, we compare their prevalence in ADPKD subjects to a control cohort without ADPKD. MATERIALS AND METHODS: ADPKD subjects and age-and gender-matched controls without ADPKD undergoing abdominal MRI from mid-thorax to the pelvis from 2003 to 2023 were retrospectively evaluated for spinal meningeal diverticula by 4 blinded observers. Prevalence of spinal meningeal diverticula in ADPKD was compared to control subjects, using t-test and correlated with clinical and laboratory data, and magnetic resonance imaging (MRI) features, including cyst volumes and cyst counts. RESULTS: Identification of spinal meningeal diverticula in ADPKD (n=285, median age, 47 [37,56]; 54% female) and control (n=285, median age, 47 [37,57]; 54% female) subjects had high inter-observer agreement (Pairwise Cohen kappa=0.74). Spinal meningeal diverticula were observed in 145 of 285 (51%) ADPKD subjects compared with 66 of 285 (23%) control subjects without ADPKD (p<0.001). Spinal meningeal diverticula in ADPKD were more prevalent in women (98 of 153 [64%]) than men (47 of 132 [36%], p<0.001). The mean number of spinal meningeal diverticula per affected ADPKD subject was 3.6 + 2.9 compared to 2.4 + 1.9 in controls with cysts (p<0.001). The median volume/interquartile range (IQR, 25%/75%) of spinal meningeal diverticula was 400 mm3 (210, 740) in ADPKD compared to 250 mm3 (180, 440) in controls (p<0.001). Mean/SD spinal meningeal diverticulum diameter was greater in the sacrum (7.3 + 4.1 mm) compared to thoracic (5.4 + 1.8 mm) and lumbar spine (5.8 + 2.0 mm), p<0.001, suggesting that that hydrostatic pressure contributed to enlargement. CONCLUSIONS: ADPKD has a high prevalence of spinal meningeal diverticula, particularly in women. ABBREVIATIONS: ADPKD = Autosomal dominant polycystic kidney disease.

2.
Sci Rep ; 14(1): 13794, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877066

ABSTRACT

Mayo Imaging Classification (MIC) for predicting future kidney growth in autosomal dominant polycystic kidney disease (ADPKD) patients is calculated from a single MRI/CT scan assuming exponential kidney volume growth and height-adjusted total kidney volume at birth to be 150 mL/m. However, when multiple scans are available, how this information should be combined to improve prediction accuracy is unclear. Herein, we studied ADPKD subjects ( n = 36 ) with 8+ years imaging follow-up (mean = 11 years) to establish ground truth kidney growth trajectory. MIC annual kidney growth rate predictions were compared to ground truth as well as 1- and 2-parameter least squares fitting. The annualized mean absolute error in MIC for predicting total kidney volume growth rate was 2.1 % ± 2 % compared to 1.1 % ± 1 % ( p = 0.002 ) for a 2-parameter fit to the same exponential growth curve used for MIC when 4 measurements were available or 1.4 % ± 1 % ( p = 0.01 ) with 3 measurements averaging together with MIC. On univariate analysis, male sex ( p = 0.05 ) and PKD2 mutation ( p = 0.04 ) were associated with poorer MIC performance. In ADPKD patients with 3 or more CT/MRI scans, 2-parameter least squares fitting predicted kidney volume growth rate better than MIC, especially in males and with PKD2 mutations where MIC was less accurate.


Subject(s)
Kidney , Magnetic Resonance Imaging , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/diagnostic imaging , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/physiopathology , Male , Female , Kidney/diagnostic imaging , Kidney/pathology , Least-Squares Analysis , Adult , Organ Size , Magnetic Resonance Imaging/methods , Middle Aged , Tomography, X-Ray Computed/methods
3.
Abdom Radiol (NY) ; 49(7): 2285-2295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38530430

ABSTRACT

BACKGROUND AND PURPOSE: The objective is to demonstrate feasibility of quantitative susceptibility mapping (QSM) in autosomal dominant polycystic kidney disease (ADPKD) patients and to compare imaging findings with traditional T1/T2w magnetic resonance imaging (MRI). METHODS: Thirty-three consecutive patients (11 male, 22 female) diagnosed with ADPKD were initially selected. QSM images were reconstructed from the multiecho gradient echo data and compared to co-registered T2w, T1w, and CT images. Complex cysts were identified and classified into distinct subclasses based on their imaging features. Prevalence of each subclass was estimated. RESULTS: QSM visualized two renal calcifications measuring 9 and 10 mm and three pelvic phleboliths measuring 2 mm but missed 24 calcifications measuring 1 mm or less and 1 larger calcification at the edge of the field of view. A total of 121 complex T1 hyperintense/T2 hypointense renal cysts were detected. 52 (43%) Cysts appeared hyperintense on QSM consistent with hemorrhage; 60 (49%) cysts were isointense with respect to simple cysts and normal kidney parenchyma, while the remaining 9 (7%) were hypointense. The presentation of the latter two complex cyst subtypes is likely indicative of proteinaceous composition without hemorrhage. CONCLUSION: Our results indicate that QSM of ADPKD kidneys is possible and uniquely suited to detect large renal calculi without ionizing radiation and able to identify properties of complex cysts unattainable with traditional approaches.


Subject(s)
Hemorrhage , Kidney Calculi , Magnetic Resonance Imaging , Polycystic Kidney, Autosomal Dominant , Humans , Female , Polycystic Kidney, Autosomal Dominant/diagnostic imaging , Polycystic Kidney, Autosomal Dominant/complications , Male , Magnetic Resonance Imaging/methods , Middle Aged , Adult , Hemorrhage/diagnostic imaging , Kidney Calculi/diagnostic imaging , Tomography, X-Ray Computed/methods , Feasibility Studies , Diagnosis, Differential , Image Interpretation, Computer-Assisted/methods , Aged
4.
Tomography ; 10(7): 1148-1158, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39058059

ABSTRACT

BACKGROUND: Pancreatic cysts in autosomal dominant polycystic kidney disease (ADPKD) correlate with PKD2 mutations, which have a different phenotype than PKD1 mutations. However, pancreatic cysts are commonly overlooked by radiologists. Here, we automate the detection of pancreatic cysts on abdominal MRI in ADPKD. METHODS: Eight nnU-Net-based segmentation models with 2D or 3D configuration and various loss functions were trained on positive-only or positive-and-negative datasets, comprising axial and coronal T2-weighted MR images from 254 scans on 146 ADPKD patients with pancreatic cysts labeled independently by two radiologists. Model performance was evaluated on test subjects unseen in training, comprising 40 internal, 40 external, and 23 test-retest reproducibility ADPKD patients. RESULTS: Two radiologists agreed on 52% of cysts labeled on training data, and 33%/25% on internal/external test datasets. The 2D model with a loss of combined dice similarity coefficient and cross-entropy trained with the dataset with both positive and negative cases produced an optimal dice score of 0.7 ± 0.5/0.8 ± 0.4 at the voxel level on internal/external validation and was thus used as the best-performing model. In the test-retest, the optimal model showed superior reproducibility (83% agreement between scan A and B) in segmenting pancreatic cysts compared to six expert observers (77% agreement). In the internal/external validation, the optimal model showed high specificity of 94%/100% but limited sensitivity of 20%/24%. CONCLUSIONS: Labeling pancreatic cysts on T2 images of the abdomen in patients with ADPKD is challenging, deep learning can help the automated detection of pancreatic cysts, and further image quality improvement is warranted.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Pancreatic Cyst , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/diagnostic imaging , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/pathology , Pancreatic Cyst/diagnostic imaging , Pancreatic Cyst/pathology , Magnetic Resonance Imaging/methods , Female , Male , Middle Aged , Adult , Reproducibility of Results , Pancreas/diagnostic imaging , Pancreas/pathology , Image Interpretation, Computer-Assisted/methods , Aged
5.
Biomedicines ; 12(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791095

ABSTRACT

Abdominal imaging of autosomal dominant polycystic kidney disease (ADPKD) has historically focused on detecting complications such as cyst rupture, cyst infection, obstructing renal calculi, and pyelonephritis; discriminating complex cysts from renal cell carcinoma; and identifying sources of abdominal pain. Many imaging features of ADPKD are incompletely evaluated or not deemed to be clinically significant, and because of this, treatment options are limited. However, total kidney volume (TKV) measurement has become important for assessing the risk of disease progression (i.e., Mayo Imaging Classification) and predicting tolvaptan treatment's efficacy. Deep learning for segmenting the kidneys has improved these measurements' speed, accuracy, and reproducibility. Deep learning models can also segment other organs and tissues, extracting additional biomarkers to characterize the extent to which extrarenal manifestations complicate ADPKD. In this concept paper, we demonstrate how deep learning may be applied to measure the TKV and how it can be extended to measure additional features of this disease.

6.
Ann Am Thorac Soc ; 21(6): 884-894, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38335160

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) and emphysema are associated with endothelial damage and altered pulmonary microvascular perfusion. The molecular mechanisms underlying these changes are poorly understood in patients, in part because of the inaccessibility of the pulmonary vasculature. Peripheral blood mononuclear cells (PBMCs) interact with the pulmonary endothelium. Objectives: To test the association between gene expression in PBMCs and pulmonary microvascular perfusion in COPD. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited two independent samples of COPD cases and controls with ⩾10 pack-years of smoking history. In both samples, pulmonary microvascular blood flow, pulmonary microvascular blood volume, and mean transit time were assessed on contrast-enhanced magnetic resonance imaging, and PBMC gene expression was assessed by microarray. Additional replication was performed in a third sample with pulmonary microvascular blood volume measures on contrast-enhanced dual-energy computed tomography. Differential expression analyses were adjusted for age, gender, race/ethnicity, educational attainment, height, weight, smoking status, and pack-years of smoking. Results: The 79 participants in the discovery sample had a mean age of 69 ± 6 years, 44% were female, 25% were non-White, 34% were current smokers, and 66% had COPD. There were large PBMC gene expression signatures associated with pulmonary microvascular perfusion traits, with several replicated in the replication sets with magnetic resonance imaging (n = 47) or dual-energy contrast-enhanced computed tomography (n = 157) measures. Many of the identified genes are involved in inflammatory processes, including nuclear factor-κB and chemokine signaling pathways. Conclusions: PBMC gene expression in nuclear factor-κB, inflammatory, and chemokine signaling pathways was associated with pulmonary microvascular perfusion in COPD, potentially offering new targetable candidates for novel therapies.


Subject(s)
Leukocytes, Mononuclear , Magnetic Resonance Imaging , Pulmonary Disease, Chronic Obstructive , Humans , Female , Male , Aged , Leukocytes, Mononuclear/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Middle Aged , Lung/blood supply , Lung/diagnostic imaging , Lung/metabolism , Atherosclerosis/genetics , Atherosclerosis/ethnology , Case-Control Studies , United States/epidemiology , Aged, 80 and over , Gene Expression , Tomography, X-Ray Computed , Pulmonary Circulation , Smoking , Microcirculation
SELECTION OF CITATIONS
SEARCH DETAIL