Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Hepatology ; 77(4): 1319-1334, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36029129

ABSTRACT

BACKGROUND AND AIMS: Receptor-interacting protein kinase 3 (RIPK3) mediates NAFLD progression, but its metabolic function is unclear. Here, we aimed to investigate the role of RIPK3 in modulating mitochondria function, coupled with lipid droplet (LD) architecture in NAFLD. APPROACH AND RESULTS: Functional studies evaluating mitochondria and LD biology were performed in wild-type (WT) and Ripk3-/- mice fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks and in CRISPR-Cas9 Ripk3 -null fat-loaded immortalized hepatocytes. The association between hepatic perilipin (PLIN) 1 and 5, RIPK3, and disease severity was also addressed in a cohort of patients with NAFLD and in PLIN1 -associated familial partial lipodystrophy. Ripk3 deficiency rescued impairment in mitochondrial biogenesis, bioenergetics, and function in CDAA diet-fed mice and fat-loaded hepatocytes. Ripk3 deficiency was accompanied by a strong upregulation of antioxidant systems, leading to diminished oxidative stress upon fat loading both in vivo and in vitro. Strikingly, Ripk3-/- hepatocytes displayed smaller size LD in higher numbers than WT cells after incubation with free fatty acids. Ripk3 deficiency upregulated adipocyte and hepatic levels of LD-associated proteins PLIN1 and PLIN5. PLIN1 upregulation controlled LD structure and diminished mitochondrial stress upon free fatty acid overload in Ripk3-/- hepatocytes and was associated with diminished human NAFLD severity. Conversely, a pathogenic PLIN1 frameshift variant was associated with NAFLD and fibrosis, as well as with increased hepatic RIPK3 levels in familial partial lipodystrophy. CONCLUSIONS: Ripk3 deficiency restores mitochondria bioenergetics and impacts LD dynamics. RIPK3 inhibition is promising in ameliorating NAFLD.


Subject(s)
Lipodystrophy, Familial Partial , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Lipid Droplets , Lipodystrophy, Familial Partial/metabolism , Lipodystrophy, Familial Partial/pathology , Liver/pathology , Hepatocytes/metabolism , Energy Metabolism , Mitochondria/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
2.
Liver Int ; 43(10): 2256-2274, 2023 10.
Article in English | MEDLINE | ID: mdl-37534739

ABSTRACT

BACKGROUND AND AIMS: The mechanisms governing the progression of non-alcoholic fatty liver disease (NAFLD) towards steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remain elusive. Here, we evaluated the role of hsa-miRNA-21-5p in NASH-related hepatocarcinogenesis. METHODS: Hepatic hsa-miR-21-5p expression was evaluated in two cohorts of patients with biopsy-proven NAFLD (n = 199) or HCC (n = 366 HCC and n = 11 NAFLD-HCC). Serum/liver metabolomic profiles were correlated with hsa-miR-21-5p in NAFLD obese patients. Wild-type (WT) and Mir21 KO mice were fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks to induce NASH and NASH-HCC, respectively. RESULTS: In obese individuals, hsa-miR-21-5p expression increased with NAFLD severity and associated with a hepatic lipotoxic profile. CDAA-fed WT mice displayed increased hepatic mmu-miR-21-5p levels and progressively developed NASH and fibrosis, with livers presenting macroscopically discernible pre-neoplastic nodules, hyperplastic foci and deregulated cancer-related pathways. Mir21 KO mice exhibited peroxisome-proliferator-activated receptor α (PPARα) activation, augmented mitochondrial activity, reduced liver injury and NAS below the threshold for NASH diagnosis, with the pro-inflammatory/fibrogenic milieu reversing to baseline levels. In parallel, Mir21 KO mice displayed reduced number of pre-neoplastic nodules, hepatocyte proliferation and activation of oncogenic signalling, being protected from NASH-associated carcinogenesis. The hsa-miRNA-21-5p/PPARα pathway was similarly deregulated in patients with HCC- or NASH-related HCC, correlating with HCC markers and worse prognosis. CONCLUSIONS: Hsa-miR-21-5p is a key inducer of whole-spectrum NAFLD progression, from simple steatosis to NASH and NASH-associated carcinogenesis. The inhibition of hsa-miR-21-5p, leading to a pro-metabolic profile, might constitute an appealing therapeutic approach to ameliorate NASH and prevent progression towards HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , PPAR alpha , Liver/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Obesity/metabolism , Choline/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
3.
BMC Med ; 20(1): 95, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35341481

ABSTRACT

BACKGROUND: Thymidine phosphorylase (TP), encoded by the TYMP gene, is a cytosolic enzyme essential for the nucleotide salvage pathway. TP catalyzes the phosphorylation of the deoxyribonucleosides, thymidine and 2'-deoxyuridine, to thymine and uracil. Biallelic TYMP variants are responsible for Mitochondrial NeuroGastroIntestinal Encephalomyopathy (MNGIE), an autosomal recessive disorder characterized in most patients by gastrointestinal and neurological symptoms, ultimately leading to death. Studies on the impact of TYMP variants in cellular systems with relevance to the organs affected in MNGIE are still scarce and the role of TP in adipose tissue remains unexplored. METHODS: Deep phenotyping was performed in three patients from two families carrying homozygous TYMP variants and presenting with lipoatrophic diabetes. The impact of the loss of TP expression was evaluated using a CRISPR-Cas9-mediated TP knockout (KO) strategy in human adipose stem cells (ASC), which can be differentiated into adipocytes in vitro. Protein expression profiles and cellular characteristics were investigated in this KO model. RESULTS: All patients had TYMP loss-of-function variants and first presented with generalized loss of adipose tissue and insulin-resistant diabetes. CRISPR-Cas9-mediated TP KO in ASC abolished adipocyte differentiation and decreased insulin response, consistent with the patients' phenotype. This KO also induced major oxidative stress, altered mitochondrial functions, and promoted cellular senescence. This translational study identifies a new role of TP by demonstrating its key regulatory functions in adipose tissue. CONCLUSIONS: The implication of TP variants in atypical forms of monogenic diabetes shows that genetic diagnosis of lipodystrophic syndromes should include TYMP analysis. The fact that TP is crucial for adipocyte differentiation and function through the control of mitochondrial homeostasis highlights the importance of mitochondria in adipose tissue biology.


Subject(s)
Diabetes Mellitus, Lipoatrophic , Insulins , Adipocytes/metabolism , Humans , Insulins/genetics , Mutation , Thymidine Phosphorylase/genetics , Thymidine Phosphorylase/metabolism
4.
Eur J Clin Invest ; 52(3): e13680, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34519030

ABSTRACT

BACKGROUND: For a long time, hydrogen sulphide (H2 S) was considered only as a toxic gas, inhibiting mitochondrial respiration at the level of cytochrome c oxidase, and an environmental pollutant. Nowadays, H2 S is recognized as the third mammalian gasotransmitter, playing an important role in inflammation, septic shock, ischaemia reperfusion events, cardiovascular disease and more recently in liver physiology and chronic liver diseases such as non-alcoholic fatty liver disease (NAFLD). METHODS: This narrative review is based on literature search using PubMed. RESULTS: From a bioenergetic perspective, H2 S is a very unique molecule, serving as a mitochondrial poison at high concentrations or as an inorganic mitochondrial substrate at low concentrations. By using transgenic animal models to specifically modulate liver H2 S biosynthesis or exogenous compounds that release H2 S, several studies demonstrated that H2 S is a key player in liver glucose and lipid metabolism. Liver H2 S content and biosynthesis were also altered in NAFLD animal models with the in vivo administration of H2 S-releasing molecules preventing the further escalation into non-alcoholic-steatohepatitis. Liver steady-state levels of H2 S, and hence its cell signalling properties, are controlled by a tight balance between its biosynthesis, mainly through the transsulphuration pathway, and its mitochondrial oxidation via the sulphide oxidizing unit. However, studies investigating mitochondrial H2 S oxidation in liver dysfunction still remain scarce. CONCLUSIONS: Since H2 S emerges as a key regulator of liver metabolism and metabolic flexibility, further understanding the physiological relevance of mitochondrial H2 S oxidation in liver energy homeostasis and its potential implication in chronic liver diseases are of great interest.


Subject(s)
Glucose/metabolism , Hydrogen Sulfide/metabolism , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans
5.
J Hepatol ; 72(4): 627-635, 2020 04.
Article in English | MEDLINE | ID: mdl-31760070

ABSTRACT

BACKGROUND & AIMS: In non-alcoholic fatty liver disease (NAFLD), hepatocytes can undergo necroptosis: a regulated form of necrotic cell death mediated by the receptor-interacting protein kinase (RIPK) 1. Herein, we assessed the potential for RIPK1 and its downstream effector mixed lineage kinase domain-like protein (MLKL) to act as therapeutic targets and markers of activity in NAFLD. METHODS: C57/BL6J-mice were fed a normal chow diet or a high-fat diet (HFD). The effect of RIPA-56, a highly specific inhibitor of RIPK1, was evaluated in HFD-fed mice and in primary human steatotic hepatocytes. RIPK1 and MLKL concentrations were measured in the serum of patients with NAFLD. RESULTS: When used as either a prophylactic or curative treatment for HFD-fed mice, RIPA-56 caused a downregulation of MLKL and a reduction of liver injury, inflammation and fibrosis, characteristic of non-alcoholic steatohepatitis (NASH), as well as of steatosis. This latter effect was reproduced by treating primary human steatotic hepatocytes with RIPA-56 or necrosulfonamide, a specific inhibitor of human MLKL, and by knockout (KO) of Mlkl in fat-loaded AML-12 mouse hepatocytes. Mlkl-KO led to activation of mitochondrial respiration and an increase in ß-oxidation in steatotic hepatocytes. Along with decreased MLKL activation, Ripk3-KO mice exhibited increased activities of the liver mitochondrial respiratory chain complexes in experimental NASH. In patients with NAFLD, serum concentrations of RIPK1 and MLKL increased in correlation with activity. CONCLUSION: The inhibition of RIPK1 improves NASH features in HFD-fed mice and reverses steatosis via an MLKL-dependent mechanism that, at least partly, involves an increase in mitochondrial respiration. RIPK1 and MLKL are potential serum markers of activity and promising therapeutic targets in NAFLD. LAY SUMMARY: There are currently no pharmacological treatment options for non-alcoholic fatty liver disease (NAFLD), which is now the most frequent liver disease. Necroptosis is a regulated process of cell death that can occur in hepatocytes during NAFLD. Herein, we show that RIPK1, a gatekeeper of the necroptosis pathway that is activated in NAFLD, can be inhibited by RIPA-56 to reduce not only liver injury, inflammation and fibrosis, but also steatosis in experimental models. These results highlight the potential of RIPK1 as a therapeutic target in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/drug therapy , Protein Kinase Inhibitors/administration & dosage , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/blood , Acrylamides/pharmacology , Aged , Animals , Diet, High-Fat , Disease Models, Animal , Female , Gene Knockout Techniques , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Necroptosis/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Protein Kinases/blood , Protein Kinases/deficiency , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Sulfonamides/pharmacology , Treatment Outcome
6.
Diabetologia ; 61(8): 1780-1793, 2018 08.
Article in English | MEDLINE | ID: mdl-29754287

ABSTRACT

AIMS/HYPOTHESIS: Dietary n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), are known to influence glucose homeostasis. We recently showed that Elovl2 expression in beta cells, which regulates synthesis of endogenous DHA, was associated with glucose tolerance and played a key role in insulin secretion. The present study aimed to examine the role of the very long chain fatty acid elongase 2 (ELOVL2)/DHA axis on the adverse effects of palmitate with high glucose, a condition defined as glucolipotoxicity, on beta cells. METHODS: We detected ELOVL2 in INS-1 beta cells and mouse and human islets using quantitative PCR and western blotting. Downregulation and adenoviral overexpression of Elovl2 was carried out in beta cells. Ceramide and diacylglycerol levels were determined by radio-enzymatic assay and lipidomics. Apoptosis was quantified using caspase-3 assays and poly (ADP-ribose) polymerase cleavage. Palmitate oxidation and esterification were determined by [U-14C]palmitate labelling. RESULTS: We found that glucolipotoxicity decreased ELOVL2 content in rodent and human beta cells. Downregulation of ELOVL2 drastically potentiated beta cell apoptosis induced by glucolipotoxicity, whereas adenoviral Elovl2 overexpression and supplementation with DHA partially inhibited glucolipotoxicity-induced cell death in rodent and human beta cells. Inhibition of beta cell apoptosis by the ELOVL2/DHA axis was associated with a decrease in ceramide accumulation. However, the ELOVL2/DHA axis was unable to directly alter ceramide synthesis or metabolism. By contrast, DHA increased palmitate oxidation but did not affect its esterification. Pharmacological inhibition of AMP-activated protein kinase and etomoxir, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme in fatty acid ß-oxidation, attenuated the protective effect of the ELOVL2/DHA axis during glucolipotoxicity. Downregulation of CPT1 also counteracted the anti-apoptotic action of the ELOVL2/DHA axis. By contrast, a mutated active form of Cpt1 inhibited glucolipotoxicity-induced beta cell apoptosis when ELOVL2 was downregulated. CONCLUSIONS/INTERPRETATION: Our results identify ELOVL2 as a critical pro-survival enzyme for preventing beta cell death and dysfunction induced by glucolipotoxicity, notably by favouring palmitate oxidation in mitochondria through a CPT1-dependent mechanism.


Subject(s)
Acetyltransferases/metabolism , Docosahexaenoic Acids/metabolism , Animals , Apoptosis/physiology , Fatty Acid Elongases , Glucose/metabolism , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Mice , Oxidation-Reduction , Palmitates/metabolism
7.
Biochim Biophys Acta ; 1861(1): 12-20, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26477381

ABSTRACT

Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N-3 polyunsaturated fatty acids (n-3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n-3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500 µM of PAL without or with 50 µM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16 h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n-3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n-3PUFA, but only EPA and DHA increased PAL ß-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial ß-oxidation.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Myoblasts, Skeletal/drug effects , Palmitates/toxicity , Animals , Cells, Cultured , Fatty Acids/metabolism , Glucose/metabolism , Insulin Resistance , Isoenzymes/physiology , Membrane Fluidity/drug effects , Mice , Myoblasts, Skeletal/metabolism , Phosphorylation , Protein Kinase C/physiology , Protein Kinase C-theta
8.
Biochim Biophys Acta ; 1861(12 Pt A): 2000-2010, 2016 12.
Article in English | MEDLINE | ID: mdl-27725263

ABSTRACT

Because the protective effect of oleate against palmitate-induced insulin resistance may be lessened in skeletal muscle once cell metabolism is overloaded by fatty acids (FAs), we examined the impact of varying amounts of oleate on palmitate metabolic channeling and insulin signaling in C2C12 myotubes. Cells were exposed to 0.5mM of palmitate and to increasing doses of oleate (0.05, 0.25 and 0.5mM). Impacts of FA treatments on radio-labelled FA fluxes, on cellular content in diacylglycerols (DAG), triacylglycerols (TAG), ceramides, acylcarnitines, on PKCθ, MAPKs (ERK1/2, p38) and NF-ΚB activation, and on insulin-dependent Akt phosphorylation were examined. Low dose of oleate (0.05mM) was sufficient to improve palmitate complete oxidation to CO2 (+29%, P<0.05) and to alter the cellular acylcarnitine profile. Insulin-induced Akt phosphorylation was 48% higher in that condition vs. palmitate alone (p<0.01). Although DAG and ceramide contents were significantly decreased with 0.05mM of oleate vs. palmitate alone (-47 and -28%, respectively, p<0.01), 0.25mM of oleate was required to decrease p38 MAPK and PKCθ phosphorylation, thus further improving the insulin signaling (+32%, p<0.05). By contrast, increasing oleate concentration from 0.25 to 0.5mM, thus increasing total amount of FA from 0.75 to 1mM, deteriorated the insulin signaling pathway (-30%, p<0.01). This was observed despite low contents in DAG and ceramides, and enhanced palmitate incorporation into TAG (+27%, p<0.05). This was associated with increased incomplete FA ß-oxidation and impairment of acylcarnitine profile. In conclusion, these combined data place mitochondrial ß-oxidation at the center of the regulation of muscle insulin sensitivity, besides p38 MAPK and PKCθ.


Subject(s)
Insulin/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Oleic Acid/pharmacology , Palmitates/metabolism , Signal Transduction/physiology , Animals , Carnitine/analogs & derivatives , Carnitine/metabolism , Cell Line , Ceramides/metabolism , Diglycerides/metabolism , Fatty Acids/metabolism , Insulin Resistance/physiology , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , NF-kappa B/metabolism , Oxidation-Reduction/drug effects , Phosphorylation/drug effects , Phosphorylation/physiology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Triglycerides/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Gut ; 65(11): 1882-1894, 2016 11.
Article in English | MEDLINE | ID: mdl-26338827

ABSTRACT

OBJECTIVE: Previous studies suggested that microRNA-21 may be upregulated in the liver in non-alcoholic steatohepatitis (NASH), but its role in the development of this disease remains unknown. This study aimed to determine the role of microRNA-21 in NASH. DESIGN: We inhibited or suppressed microRNA-21 in different mouse models of NASH: (a) low-density lipoprotein receptor-deficient (Ldlr-/-) mice fed a high-fat diet and treated with antagomir-21 or antagomir control; (b) microRNA-21-deficient and wild-type mice fed a methionine-choline-deficient (MCD) diet; (c) peroxisome proliferation-activator receptor α (PPARα)-deficient mice fed an MCD diet and treated with antagomir-21 or antagomir control. We assessed features of NASH and determined liver microRNA-21 levels and cell localisation. MicroRNA-21 levels were also quantified in the liver of patients with NASH, bland steatosis or normal liver and localisation was determined. RESULTS: Inhibiting or suppressing liver microRNA-21 expression reduced liver cell injury, inflammation and fibrogenesis without affecting liver lipid accumulation in Ldlr-/- fed a high-fat diet and in wild-type mice fed an MCD diet. Liver microRNA-21 was overexpressed, primarily in biliary and inflammatory cells, in mouse models as well as in patients with NASH, but not in patients with bland steatosis. PPARα, a known microRNA-21 target, implicated in NASH, was decreased in the liver of mice with NASH and restored following microRNA-21 inhibition or suppression. The effect of antagomir-21 was lost in PPARα-deficient mice. CONCLUSIONS: MicroRNA-21 inhibition or suppression decreases liver injury, inflammation and fibrosis, by restoring PPARα expression. Antagomir-21 might be a future therapeutic strategy for NASH.


Subject(s)
MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease , Oligonucleotides , PPAR alpha/metabolism , Animals , Diet, High-Fat , Gene Expression Profiling/methods , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Lipid Metabolism , Lipoproteins, LDL/metabolism , Mice , MicroRNAs/antagonists & inhibitors , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Oligonucleotides/metabolism , Oligonucleotides/pharmacology , PPAR alpha/antagonists & inhibitors
10.
Am J Physiol Endocrinol Metab ; 311(3): E649-60, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27507552

ABSTRACT

Impaired skeletal muscle mitochondrial fatty acid oxidation (mFAO) has been implicated in the etiology of insulin resistance. Carnitine palmitoyltransferase-1 (CPT1) is a key regulatory enzyme of mFAO whose activity is inhibited by malonyl-CoA, a lipogenic intermediate. Whereas increasing CPT1 activity in vitro has been shown to exert a protective effect against lipid-induced insulin resistance in skeletal muscle cells, only a few studies have addressed this issue in vivo. We thus examined whether a direct modulation of muscle CPT1/malonyl-CoA partnership is detrimental or beneficial for insulin sensitivity in the context of diet-induced obesity. By using a Cre-LoxP recombination approach, we generated mice with skeletal muscle-specific and inducible expression of a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA inhibition. When fed control chow, homozygous CPT1mt transgenic (dbTg) mice exhibited decreased CPT1 sensitivity to malonyl-CoA inhibition in isolated muscle mitochondria, which was sufficient to substantially increase ex vivo muscle mFAO capacity and whole body fatty acid utilization in vivo. Moreover, dbTg mice were less prone to high-fat/high-sucrose (HFHS) diet-induced insulin resistance and muscle lipotoxicity despite similar body weight gain, adiposity, and muscle malonyl-CoA content. Interestingly, these CPT1mt-protective effects in dbTg-HFHS mice were associated with preserved muscle insulin signaling, increased muscle glycogen content, and upregulation of key genes involved in muscle glucose metabolism. These beneficial effects of muscle CPT1mt expression suggest that a direct modulation of the malonyl-CoA/CPT1 partnership in skeletal muscle could represent a potential strategy to prevent obesity-induced insulin resistance.


Subject(s)
Carnitine O-Palmitoyltransferase/biosynthesis , Diet, High-Fat/adverse effects , Dietary Sucrose/adverse effects , Insulin Resistance , Malonyl Coenzyme A/metabolism , Muscle, Skeletal/metabolism , Animals , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Carnitine O-Palmitoyltransferase/genetics , Energy Metabolism/drug effects , Glucose/metabolism , Male , Malonyl Coenzyme A/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Mutation/genetics , Obesity/metabolism , Oxygen Consumption/drug effects , Signal Transduction/drug effects
11.
FASEB J ; 29(6): 2473-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25713059

ABSTRACT

Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine palmitoyltransferase 1 (CPT1) being the key regulatory enzyme. Whether increasing muscle mFAO affects skeletal muscle physiology in adulthood actually remains unknown. To investigate this, we used in vivo electrotransfer technology to express in mouse tibialis anterior (TA), a fast/glycolytic muscle, a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA, its physiologic inhibitor. In young (2-mo-old) adult mice, muscle CPT1mt expression enhanced mFAO (+40%), but also increased the percentage of oxidative fibers (+28%), glycogen content, and capillary-to-fiber density (+45%). This CPT1mt-induced muscle remodeling, which mimicked exercise-induced oxidative phenotype, led to a greater resistance to muscle fatigue. In the context of aging, characterized by sarcopenia and reduced oxidative capacity, CPT1mt expression in TAs from aged (20-mo-old) mice partially reversed aging-associated sarcopenia and fiber-type transition, and increased muscle capillarity. These findings provide evidence that mFAO regulates muscle phenotype and may be a potential target to combat age-related decline in muscle function.


Subject(s)
Carnitine O-Palmitoyltransferase/metabolism , Fatty Acids/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Age Factors , Animals , Blotting, Western , Carnitine O-Palmitoyltransferase/genetics , Gene Expression , Glycogen/metabolism , Male , Mice, Inbred C57BL , Mitochondria, Muscle/physiology , Muscle Fatigue/genetics , Muscle Fatigue/physiology , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Mutation , Oxidation-Reduction , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Sarcopenia/genetics , Sarcopenia/physiopathology , Transfection
12.
Am J Physiol Regul Integr Comp Physiol ; 308(2): R131-7, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25427767

ABSTRACT

Hepatic fatty acid oxidation (FAO) has long been implicated in the control of eating. Nevertheless, direct evidence for a causal relationship between changes in hepatic FAO and changes in food intake is still missing. Here we tested whether increasing hepatic FAO via adenovirus-mediated expression of a mutated form of the key regulatory enzyme of mitochondrial FAO carnitine palmitoyltransferase 1A (CPT1mt), which is active but insensitive to inhibition by malonyl-CoA, affects eating and metabolism in mice. CPT1mt expression increased hepatocellular CPT1 protein levels. This resulted in an increase in circulating ketone body levels in fasted CPT1mt-expressing mice, suggesting an increase in hepatic FAO. These mice did not show any significant changes in cumulative food intake, energy expenditure, or respiratory quotient after 4-h food deprivation. After 24-h food deprivation, however, the CPT1mt-expressing mice displayed increased food intake. Thus expression of CPT1mt in the liver increases hepatic FAO capacity, but does not inhibit eating. Rather, it may even stimulate eating after prolonged food deprivation. These data do not support the hypothesis that an increase in hepatic FAO decreases food intake.


Subject(s)
Carnitine O-Palmitoyltransferase/metabolism , Eating/physiology , Fatty Acids/metabolism , Lipid Metabolism/physiology , Liver/metabolism , Mitochondria/metabolism , Animals , Energy Metabolism/physiology , Food Deprivation/physiology , Male , Mice, Inbred C57BL , Models, Animal , Oxidation-Reduction
13.
Nitric Oxide ; 41: 105-12, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24928562

ABSTRACT

Hydrogen sulfide (H2S) is the third gasotransmitter discovered. Sulfide shares with the two others (NO and CO) the same inhibiting properties towards mitochondrial respiration. However, in contrast with NO or CO, sulfide at concentrations lower than the toxic (µM) level is an hydrogen donor and a substrate for mitochondrial respiration. This is due to the activity of a sulfide quinone reductase found in a large majority of mitochondria. An ongoing study of the metabolic state of liver in obese patients allowed us to evaluate the sulfide oxidation capacity with twelve preparations of human liver mitochondria. The results indicate relatively high rates of sulfide oxidation with a large variability between individuals. These observations made with isolated mitochondria appear in agreement with the main characteristics of sulfide oxidation as established before with the help of cellular models.


Subject(s)
Hydrogen Sulfide/metabolism , Mitochondria, Liver/metabolism , Models, Biological , Oxidation-Reduction , Blood Pressure/physiology , Humans , Obesity/metabolism
14.
Nat Commun ; 15(1): 1879, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424041

ABSTRACT

Cancer cells integrate multiple biosynthetic demands to drive unrestricted proliferation. How these cellular processes crosstalk to fuel cancer cell growth is still not fully understood. Here, we uncover the mechanisms by which the transcription factor Carbohydrate responsive element binding protein (ChREBP) functions as an oncogene during hepatocellular carcinoma (HCC) development. Mechanistically, ChREBP triggers the expression of the PI3K regulatory subunit p85α, to sustain the activity of the pro-oncogenic PI3K/AKT signaling pathway in HCC. In parallel, increased ChREBP activity reroutes glucose and glutamine metabolic fluxes into fatty acid and nucleic acid synthesis to support PI3K/AKT-mediated HCC growth. Thus, HCC cells have a ChREBP-driven circuitry that ensures balanced coordination between PI3K/AKT signaling and appropriate cell anabolism to support HCC development. Finally, pharmacological inhibition of ChREBP by SBI-993 significantly suppresses in vivo HCC tumor growth. Overall, we show that targeting ChREBP with specific inhibitors provides an attractive therapeutic window for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Liver Neoplasms/metabolism , Signal Transduction , Carcinogenesis , Cell Proliferation , Cell Line, Tumor
15.
J Hepatol ; 56(3): 632-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22037024

ABSTRACT

BACKGROUND & AIMS: Despite major public health concern, therapy for non-alcoholic fatty liver, the liver manifestation of the metabolic syndrome often associated with insulin resistance (IR), remains elusive. Strategies aiming to decrease liver lipogenesis effectively corrected hepatic steatosis and IR in obese animals. However, they also indirectly increased mitochondrial long-chain fatty acid oxidation (mFAO) by decreasing malonyl-CoA, a lipogenic intermediate, which is the allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT1A), the key enzyme of mFAO. We thus addressed whether enhancing hepatic mFAO capacity, through a direct modulation of liver CPT1A/malonyl-CoA partnership, can reverse an already established hepatic steatosis and IR in obese mice. METHODS: Adenovirus-mediated liver expression of a malonyl-CoA-insensitive CPT1A (CPT1mt) in high-fat/high-sucrose (HF/HS) diet-induced or genetically (ob/ob) obese mice was followed by metabolic and physiological investigations. RESULTS: In association with increased hepatic mFAO capacity, liver CPT1mt expression improved glucose tolerance and insulin response to a glucose load in HF/HS and ob/ob mice, showing increased insulin sensitivity, and corrected IR in ob/ob mice. Surprisingly, hepatic steatosis was not affected in CPT1mt-expressing obese mice, indicating a clear dissociation between hepatic steatosis and IR. Moreover, liver CPT1mt expression rescued HF/HS-induced impaired hepatic insulin signaling at the level of IRS-1, IRS-2, Akt, and GSK-3ß, most likely through the observed decrease in the HF/HS-induced accumulation of lipotoxic lipids, oxidative stress, and JNK activation. CONCLUSIONS: Enhancing hepatic mFAO capacity is sufficient to reverse a state of IR and glucose intolerance in obese mice independently of hepatic steatosis.


Subject(s)
Fatty Acids/metabolism , Fatty Liver/metabolism , Glucose Intolerance/metabolism , Insulin Resistance/physiology , Mitochondria, Liver/metabolism , Obesity/metabolism , Adenoviridae/genetics , Adiposity/physiology , Animals , Body Weight/physiology , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Glucaric Acid/metabolism , Lipid Metabolism/physiology , Male , Malonyl Coenzyme A/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Oxidation-Reduction
16.
J Nutr ; 142(2): 221-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22223579

ABSTRACT

Oleate (OLE) is the principle fatty acid (FA) in mammalian colostrum, but its role in the energy supply in enterocytes after birth remains unknown. We investigated the metabolic fate of OLE in pig enterocytes at birth (d0) and after 2 d of suckling (d2). Cellular TG and phospholipids (PL) and FA composition were analyzed. Metabolic end-products of [1-¹4C]OLE were measured in enterocyte incubations. We characterized intestinal carnitine palmitoyltransferase 1 (CPT1), the key enzyme of mitochondrial FA oxidation. The TG content was 6.6-fold higher in enterocytes from pigs on d 2 than in those obtained on d 0, whereas the PL content did not differ. The level of OLE in TG and PL increased from 15 and 11% of total FA, respectively, in enterocytes from newborn piglets to 30 and 17%, respectively, in those from d2 pigs. The capacity for OLE utilization was 2.8-fold greater in d2 than in d0 pig enterocytes. The oxidation and esterification rates were enhanced in enterocytes from piglets on d 2 compared to those obtained on d 0, by 4- and 2.6-fold, respectively. The predominant OLE fate was the esterification pathway, representing >85% of OLE metabolized in both groups. The limited OLE oxidation observed at d 2 may result from the presence of a highly malonyl-CoA-sensitive CPT1A, because the half maximal inhibitory concentration for malonyl-CoA was 162 ± 25 nmol/L. This study highlighted the high esterification capacity for OLE in the newborn pig intestine, which may preserve this major colostrum FA for delivery to other tissues.


Subject(s)
Animals, Newborn/metabolism , Enterocytes/metabolism , Oleic Acid/metabolism , Swine/metabolism , Animals , Animals, Suckling , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Colostrum , Enterocytes/drug effects , Esterification , Gene Expression Regulation/physiology , Glucose/pharmacology , Malonyl Coenzyme A/genetics , Malonyl Coenzyme A/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Phospholipids/chemistry , Phospholipids/metabolism , Triglycerides/chemistry , Triglycerides/metabolism
17.
Metabolites ; 12(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36355164

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex disorder that is implicated in dysregulations in multiple biological pathways, orchestrated by interactions between genetic predisposition, metabolic syndromes and environmental factors. The limited knowledge of its pathogenesis is one of the bottlenecks in the development of prognostic and therapeutic options for MAFLD. Moreover, the extent to which metabolic pathways are altered due to ongoing hepatic steatosis, inflammation and fibrosis and subsequent liver damage remains unclear. To uncover potential MAFLD pathogenesis in humans, we employed an untargeted nuclear magnetic resonance (NMR) spectroscopy- and high-resolution mass spectrometry (HRMS)-based multiplatform approach combined with a computational multiblock omics framework to characterize the plasma metabolomes and lipidomes of obese patients without (n = 19) or with liver biopsy confirmed MAFLD (n = 63). Metabolite features associated with MAFLD were identified using a metabolome-wide association study pipeline that tested for the relationships between feature responses and MAFLD. A metabolic pathway enrichment analysis revealed 16 pathways associated with MAFLD and highlighted pathway changes, including amino acid metabolism, bile acid metabolism, carnitine shuttle, fatty acid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism and steroid metabolism. These results suggested that there were alterations in energy metabolism, specifically amino acid and lipid metabolism, and pointed to the pathways being implicated in alerted liver function, mitochondrial dysfunctions and immune system disorders, which have previously been linked to MAFLD in human and animal studies. Together, this study revealed specific metabolic alterations associated with MAFLD and supported the idea that MAFLD is fundamentally a metabolism-related disorder, thereby providing new perspectives for diagnostic and therapeutic strategies.

18.
Front Immunol ; 13: 960226, 2022.
Article in English | MEDLINE | ID: mdl-36275699

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T cell progenitors. Since relapsed T-ALL is associated with a poor prognosis improving initial treatment of patients is essential to avoid resistant selection of T-ALL. During initiation, development, metastasis and even in response to chemotherapy, tumor cells face strong metabolic challenges. In this study, we identify mitochondrial UnCoupling Protein 2 (UCP2) as a tricarboxylic acid (TCA) cycle metabolite transporter controlling glutamine metabolism associated with T-ALL cell proliferation. In T-ALL cell lines, we show that UCP2 expression is controlled by glutamine metabolism and is essential for their proliferation. Our data show that T-ALL cell lines differ in their substrate dependency and their energetic metabolism (glycolysis and oxidative). Thus, while UCP2 silencing decreases cell proliferation in all leukemia cells, it also alters mitochondrial respiration of T-ALL cells relying on glutamine-dependent oxidative metabolism by rewiring their cellular metabolism to glycolysis. In this context, the function of UCP2 in the metabolite export of malate enables appropriate TCA cycle to provide building blocks such as lipids for cell growth and mitochondrial respiration. Therefore, interfering with UCP2 function can be considered as an interesting strategy to decrease metabolic efficiency and proliferation rate of leukemia cells.


Subject(s)
Glutamine , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism , Glutamine/metabolism , Malates , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Proliferation , Tricarboxylic Acids , Lipids
19.
J Biol Chem ; 285(47): 36818-27, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-20837491

ABSTRACT

The mechanisms underlying the protective effect of monounsaturated fatty acids (e.g. oleate) against the lipotoxic action of saturated fatty acids (e.g. palmitate) in skeletal muscle cells remain poorly understood. This study aimed to examine the role of mitochondrial long-chain fatty acid (LCFA) oxidation in mediating oleate's protective effect against palmitate-induced lipotoxicity. CPT1 (carnitine palmitoyltransferase 1), which is the key regulatory enzyme of mitochondrial LCFA oxidation, is inhibited by malonyl-CoA, an intermediate of lipogenesis. We showed that expression of a mutant form of CPT1 (CPT1mt), which is active but insensitive to malonyl-CoA inhibition, in C2C12 myotubes led to increased LCFA oxidation flux even in the presence of high concentrations of glucose and insulin. Furthermore, similar to preincubation with oleate, CPT1mt expression protected muscle cells from palmitate-induced apoptosis and insulin resistance by decreasing the content of deleterious palmitate derivates (i.e. diacylglycerols and ceramides). Oleate preincubation exerted its protective effect by two mechanisms: (i) in contrast to CPT1mt expression, oleate preincubation increased the channeling of palmitate toward triglycerides, as a result of enhanced diacylglycerol acyltransferase 2 expression, and (ii) oleate preincubation promoted palmitate oxidation through increasing CPT1 expression and modulating the activities of acetyl-CoA carboxylase and AMP-activated protein kinase. In conclusion, we demonstrated that targeting mitochondrial LCFA oxidation via CPT1mt expression leads to the same protective effect as oleate preincubation, providing strong evidence that redirecting palmitate metabolism toward oxidation is sufficient to protect against palmitate-induced lipotoxicity.


Subject(s)
Apoptosis , Mitochondria/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Oleic Acid/chemistry , Palmitates/pharmacology , Animals , Blotting, Western , Carnitine O-Palmitoyltransferase/metabolism , Cells, Cultured , Fluorescent Antibody Technique , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Oleic Acid/metabolism , Oxidation-Reduction , Oxygen Consumption , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(12): 159030, 2021 12.
Article in English | MEDLINE | ID: mdl-34419589

ABSTRACT

In the liver, contact sites between the endoplasmic reticulum (ER) and mitochondria (named MAMs) may be crucial hubs for the regulation of lipid metabolism, thus contributing to the exacerbation or prevention of fatty liver. We hypothesized that tether proteins located at MAMs could play a key role in preventing triglyceride accumulation in hepatocytes and nonalcoholic fatty liver disease (NAFLD) occurrence. To test this, we explored the role of two key partners in building MAM integrity and functionality, the glucose-regulated protein 75 (Grp75) and mitofusin 2 (Mfn2), which liver contents are altered in obesity and NAFLD. Grp75 or Mfn2 expression was either silenced using siRNA or overexpressed with adenoviruses in Huh7 cells. Silencing of Grp75 and Mfn2 resulted in decreased ER-mitochondria interactions, mitochondrial network fusion state and mitochondrial oxidative capacity, while overexpression of the two proteins induced mirror impacts on these parameters. Furthermore, Grp75 or Mfn2 silencing decreased cellular cholesterol content and enhanced triglyceride secretion in ApoB100 lipoproteins, while their overexpression led to reverse effects. Cellular phosphatidylcholine/phosphatidylethanolamine ratio was decreased only upon overexpression of the proteins, potentially contributing to altered ApoB100 assembly and secretion. Despite the opposite differences, both silencing and overexpression of Grp75 or Mfn2 induced triglyceride storage, although a fatty acid challenge was required to express the alteration upon protein silencing. Among the mechanisms potentially involved in this phenotype, ER stress was closely associated with altered triglyceride metabolism after Grp75 or Mfn2 overexpression, while blunted mitochondrial FA oxidation capacity may be the main defect causing triglyceride accumulation upon Grp75 or Mfn2 silencing. Further studies are required to decipher the link between modulation of Grp75 or Mfn2 expression, change in MAM integrity and alteration of cholesterol content of the cell. In conclusion, Grp75 or Mfn2 silencing and overexpression in Huh7 cells contribute to altering MAM integrity and cholesterol storage in opposite directions, but all promote triglyceride accumulation through distinct cellular pathways. This study also highlights that besides Mfn2, Grp75 could play a central role in hepatic lipid and cholesterol metabolism in obesity and NAFLD.


Subject(s)
Apolipoprotein B-100/genetics , Cholesterol/metabolism , GTP Phosphohydrolases/genetics , HSP70 Heat-Shock Proteins/genetics , Mitochondrial Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Cell Line , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/antagonists & inhibitors , Gain of Function Mutation/genetics , Gene Expression Regulation/genetics , Gene Silencing , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Hepatocytes/metabolism , Humans , Liver/metabolism , Loss of Function Mutation/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL