Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Nat Immunol ; 24(3): 501-515, 2023 03.
Article in English | MEDLINE | ID: mdl-36797499

ABSTRACT

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.


Subject(s)
Pyrimidines , Cell Cycle , Cell Differentiation
3.
Nature ; 605(7911): 728-735, 2022 05.
Article in English | MEDLINE | ID: mdl-35545675

ABSTRACT

Immunotherapies have achieved remarkable successes in the treatment of cancer, but major challenges remain1,2. An inherent weakness of current treatment approaches is that therapeutically targeted pathways are not restricted to tumours, but are also found in other tissue microenvironments, complicating treatment3,4. Despite great efforts to define inflammatory processes in the tumour microenvironment, the understanding of tumour-unique immune alterations is limited by a knowledge gap regarding the immune cell populations in inflamed human tissues. Here, in an effort to identify such tumour-enriched immune alterations, we used complementary single-cell analysis approaches to interrogate the immune infiltrate in human head and neck squamous cell carcinomas and site-matched non-malignant, inflamed tissues. Our analysis revealed a large overlap in the composition and phenotype of immune cells in tumour and inflamed tissues. Computational analysis identified tumour-enriched immune cell interactions, one of which yields a large population of regulatory T (Treg) cells that is highly enriched in the tumour and uniquely identified among all haematopoietically-derived cells in blood and tissue by co-expression of ICOS and IL-1 receptor type 1 (IL1R1). We provide evidence that these intratumoural IL1R1+ Treg cells had responded to antigen recently and demonstrate that they are clonally expanded with superior suppressive function compared with IL1R1- Treg cells. In addition to identifying extensive immunological congruence between inflamed tissues and tumours as well as tumour-specific changes with direct disease relevance, our work also provides a blueprint for extricating disease-specific changes from general inflammation-associated patterns.


Subject(s)
Neoplasms , Humans , Immunotherapy , Inflammation , Neoplasms/pathology , T-Lymphocytes, Regulatory , Tumor Microenvironment
4.
Immunol Rev ; 323(1): 138-149, 2024 May.
Article in English | MEDLINE | ID: mdl-38520075

ABSTRACT

Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.


Subject(s)
Mucosal-Associated Invariant T Cells , Signal Transduction , Humans , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Animals , Inflammation/immunology , Lymphocyte Activation/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/immunology , Receptors, Antigen, T-Cell/metabolism
5.
Immunol Rev ; 316(1): 52-62, 2023 07.
Article in English | MEDLINE | ID: mdl-37140024

ABSTRACT

Tissue-resident memory T cells (TRM ) are considered to be central to maintaining mucosal barrier immunity and tissue homeostasis. Most of this knowledge stems from murine studies, which provide access to all organs. These studies also allow for a thorough assessment of the TRM compartment for each tissue and across tissues with well-defined experimental and environmental variables. Assessing the functional characteristics of the human TRM compartment is substantially more difficult; thus, notably, there is a paucity of studies profiling the TRM compartment in the human female reproductive tract (FRT). The FRT is a mucosal barrier tissue that is naturally exposed to a wide range of commensal and pathogenic microbes, including several sexually transmitted infections of global health significance. We provide an overview of studies describing T cells within the lower FRT tissues and highlight the challenges of studying TRM cells in the FRT: different sampling methods of the FRT greatly affect immune cell recovery, especially of TRM cells. Furthermore, menstrual cycle, menopause, and pregnancy affect FRT immunity, but little is known about changes in the TRM compartment. Finally, we discuss the potential functional plasticity of the TRM compartment during inflammatory episodes in the human FRT to maintain protection and tissue homeostasis, which are required to ensure reproductive fitness.


Subject(s)
Genitalia, Female , T-Lymphocytes , Pregnancy , Humans , Female , Animals , Mice , Mucous Membrane , Immunologic Memory , CD8-Positive T-Lymphocytes
6.
Proc Natl Acad Sci U S A ; 120(48): e2313228120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37988468

ABSTRACT

Transforming growth factor ß (TGF-ß) directly acts on naive, effector, and memory T cells to control cell fate decisions, which was shown using genetic abrogation of TGF-ß signaling. TGF-ß availability is altered by infections and cancer; however, the dose-dependent effects of TGF-ß on memory CD8 T cell (Tmem) reactivation are still poorly defined. We examined how activation and TGF-ß signals interact to shape the functional outcome of Tmem reactivation. We found that TGF-ß could suppress cytotoxicity in a manner that was inversely proportional to the strength of the activating TCR or proinflammatory signals. In contrast, even high doses of TGF-ß had a comparatively modest effect on IFN-γ expression in the context of weak and strong reactivation signals. Since CD8 Tmem may not always receive TGF-ß signals concurrently with reactivation, we also explored whether the temporal order of reactivation versus TGF-ß signals is of importance. We found that exposure to TGF-ß before or after an activation event were both sufficient to reduce cytotoxic effector function. Concurrent ATAC-seq and RNA-seq analysis revealed that TGF-ß altered ~10% of the regulatory elements induced by reactivation and also elicited transcriptional changes indicative of broadly modulated functional properties. We confirmed some changes on the protein level and found that TGF-ß-induced expression of CCR8 was inversely proportional to the strength of the reactivating TCR signal. Together, our data suggest that TGF-ß is not simply suppressing CD8 Tmem but modifies functional and chemotactic properties in context of their reactivation signals and in a dose-dependent manner.


Subject(s)
Memory T Cells , Transforming Growth Factor beta , Transforming Growth Factor beta/genetics , CD8-Positive T-Lymphocytes/metabolism , Signal Transduction , Receptors, Antigen, T-Cell/metabolism
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35105810

ABSTRACT

Competition between antigen-specific T cells for peptide:MHC complexes shapes the ensuing T cell response. Mouse model studies provided compelling evidence that competition is a highly effective mechanism controlling the activation of naïve T cells. However, assessing the effect of T cell competition in the context of a human infection requires defined pathogen kinetics and trackable naïve and memory T cell populations of defined specificity. A unique cohort of nonmyeloablative hematopoietic stem cell transplant patients allowed us to assess T cell competition in response to cytomegalovirus (CMV) reactivation, which was documented with detailed virology data. In our cohort, hematopoietic stem cell transplant donors and recipients were CMV seronegative and positive, respectively, thus providing genetically distinct memory and naïve T cell populations. We used single-cell transcriptomics to track donor versus recipient-derived T cell clones over the course of 90 d. We found that donor-derived T cell clones proliferated and expanded substantially following CMV reactivation. However, for immunodominant CMV epitopes, recipient-derived memory T cells remained the overall dominant population. This dominance was maintained despite more robust clonal expansion of donor-derived T cells in response to CMV reactivation. Interestingly, the donor-derived T cells that were recruited into these immunodominant memory populations shared strikingly similar TCR properties with the recipient-derived memory T cells. This selective recruitment of identical and nearly identical clones from the naïve into the immunodominant memory T cell pool suggests that competition is in place but does not interfere with rejuvenating a memory T cell population. Instead, it results in selection of convergent clones to the memory T cell pool.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/physiology , Hematopoietic Stem Cell Transplantation , Memory T Cells/immunology , Tissue Donors , Virus Activation/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
8.
Cytometry A ; 105(6): 430-436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634730

ABSTRACT

We report the development of an optimized 50-color spectral flow cytometry panel designed for the in-depth analysis of the immune system in human blood and tissues, with the goal of maximizing the amount of information that can be collected using currently available flow cytometry platforms. We established and tested this panel using peripheral blood mononuclear cells (PBMCs), but included CD45 to enable its future use for the analysis of human tissue samples. The panel contains lineage markers for all major immune cell subsets, and an extensive set of phenotyping markers focused on the activation and differentiation status of the T cell and dendritic cell (DC) compartment. We outline the biological insight that can be gained from the simultaneous measurement of such a large number of proteins and propose that this approach provides a unique opportunity for the comprehensive exploration of the immune status in human samples with a limited number of cells. Of note, we tested the panel to be compatible with cell sorting for further downstream applications. Furthermore, to facilitate the wide-spread implementation of such a panel across different cohorts and samples, we established a trimmed-down 45-color version which can be used with different spectral cytometry platforms. Finally, to generate this panel, we utilized not only existing panel design guidelines, but also developed new metrics to systematically identify the optimal combination of 50 fluorochromes and evaluate fluorochrome-specific resolution in the context of a 50-color unmixing matrix.


Subject(s)
Dendritic Cells , Flow Cytometry , Immunophenotyping , T-Lymphocytes , Humans , Dendritic Cells/immunology , Dendritic Cells/cytology , Flow Cytometry/methods , Immunophenotyping/methods , T-Lymphocytes/immunology , T-Lymphocytes/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/cytology , Immune System/cytology , Phenotype , Biomarkers
9.
J Immunol ; 206(3): 455-462, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33468558

ABSTRACT

Memory T cells (Tmem) rapidly mount Ag-specific responses during pathogen reencounter. However, Tmem also respond to inflammatory cues in the absence of an activating TCR signal, a phenomenon termed bystander activation. Although bystander activation was first described over 20 years ago, the physiological relevance and the consequences of T cell bystander activation have only become more evident in recent years. In this review, we discuss the scenarios that trigger CD8 Tmem bystander activation including acute and chronic infections that are either systemic or localized, as well as evidence for bystander CD8 Tmem within tumors and following vaccination. We summarize the possible consequences of bystander activation for the T cell itself, the subsequent immune response, and the host. We highlight when T cell bystander activation appears to benefit or harm the host and briefly discuss our current knowledge gaps regarding regulatory signals that can control bystander activation.


Subject(s)
Bystander Effect/immunology , CD8-Positive T-Lymphocytes/immunology , Infections/immunology , Neoplasms/immunology , Vaccines/immunology , Animals , Humans , Immunity, Heterologous , Immunologic Memory , Lymphocyte Activation
10.
J Immunol ; 206(12): 2937-2948, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34088770

ABSTRACT

Tissue-resident memory CD8 T cells (CD8 TRM) are critical for maintaining barrier immunity. CD8 TRM have been mainly studied in the skin, lung and gut, with recent studies suggesting that the signals that control tissue residence and phenotype are highly tissue dependent. We examined the T cell compartment in healthy human cervicovaginal tissue (CVT) and found that most CD8 T cells were granzyme B+ and TCF-1- To address if this phenotype is driven by CVT tissue residence, we used a mouse model to control for environmental factors. Using localized and systemic infection models, we found that CD8 TRM in the mouse CVT gradually acquired a granzyme B+, TCF-1- phenotype as seen in human CVT. In contrast to CD8 TRM in the gut, these CD8 TRM were not stably maintained regardless of the initial infection route, which led to reductions in local immunity. Our data show that residence in the CVT is sufficient to progressively shape the size and function of its CD8 TRM compartment.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cervix Uteri/immunology , Herpes Simplex/immunology , Vagina/immunology , Adult , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cervix Uteri/drug effects , Cervix Uteri/virology , Female , Herpes Simplex/drug therapy , Herpes Simplex/virology , Herpesvirus 2, Human/drug effects , Herpesvirus 2, Human/immunology , Humans , Injections, Subcutaneous , Medroxyprogesterone Acetate/administration & dosage , Medroxyprogesterone Acetate/pharmacology , Mice , Mice, Inbred C57BL , Vagina/drug effects , Vagina/virology , Young Adult
11.
Immunol Rev ; 285(1): 113-133, 2018 09.
Article in English | MEDLINE | ID: mdl-30129205

ABSTRACT

Herpes simplex virus-2 infection is characterized by frequent episodic shedding in the genital tract. Expansion in HSV-2 viral load early during episodes is extremely rapid. However, the virus invariably peaks within 18 hours and is eliminated nearly as quickly. A critical feature of HSV-2 shedding episodes is their heterogeneity. Some episodes peak at 108 HSV DNA copies, last for weeks due to frequent viral re-expansion, and lead to painful ulcers, while others only reach 103 HSV DNA copies and are eliminated within hours and without symptoms. Within single micro-environments of infection, tissue-resident CD8+ T cells (TRM ) appear to contain infection within a few days. Here, we review components of TRM biology relevant to immune surveillance between HSV-2 shedding episodes and containment of infection upon detection of HSV-2 cognate antigen. We then describe the use of mathematical models to correlate large spatial gradients in TRM density with the heterogeneity of observed shedding within a single person. We describe how models have been leveraged for clinical trial simulation, as well as future plans to model the interactions of multiple cellular subtypes within mucosa, predict the mechanism of action of therapeutic vaccines, and describe the dynamics of 3-dimensional infection environment during the natural evolution of an HSV-2 lesion.


Subject(s)
Herpes Genitalis/immunology , Herpes Simplex Virus Vaccines/immunology , Herpesvirus 2, Human/physiology , T-Lymphocytes, Regulatory/immunology , Viral Load , Animals , CD8 Antigens/metabolism , Cellular Microenvironment , Humans , Lymphocyte Activation , Single-Cell Analysis , Virus Activation
12.
Cytometry A ; 97(10): 1052-1056, 2020 10.
Article in English | MEDLINE | ID: mdl-32978859

ABSTRACT

This 27-color panel has been validated and optimized to comprehensively profile natural killer (NK) cells isolated from human tumors using a collagenase Type II-based digestion protocol. We confirmed that detection of protein expression by antibodies used in our final panel was not affected during tissue digestion. During this evaluation process, we found that detection of CD56, a biomarker typically used to identify NK cells, was affected substantially by collagenase-based digestion. Thus, our panel is centered around expression of NKp46, which is sufficient to identify NK cells and not affected by the tissue collagenase digestion step. Our panel further includes biomarkers used to extrapolate NK-cell maturation, differentiation, migration, homing potential, and functional state. Our panel is intended to provide in-depth characterization of human NK cells isolated from tissues, which we specifically tested using oral squamous cell carcinomas tissues, but it is compatible with other tissues that can be dissociated with a collagenase Type II-based protocol. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.


Subject(s)
Killer Cells, Natural , Neoplasms , CD56 Antigen , Flow Cytometry , Humans , Immunophenotyping , Killer Cells, Natural/immunology
13.
J Immunol ; 201(5): 1522-1535, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30045971

ABSTRACT

Tissue-resident CD8+ T cells (Trm) can rapidly eliminate virally infected cells, but their heterogeneous spatial distribution may leave gaps in protection within tissues. Although Trm patrol prior sites of viral replication, murine studies suggest they do not redistribute to adjacent uninfected sites to provide wider protection. We perform mathematical modeling of HSV-2 shedding in Homo sapiens and predict that infection does not induce enough Trm in many genital tract regions to eliminate shedding; a strict spatial distribution pattern of mucosal CD8+ T cell density is maintained throughout chronic infection, and trafficking of Trm across wide genital tract areas is unlikely. These predictions are confirmed with spatial analysis of CD8+ T cell distribution in histopathologic specimens from human genital biopsies. Further simulations predict that the key mechanistic correlate of protection following therapeutic HSV-2 vaccination would be an increase in total Trm rather than spatial reassortment of these cells. The fixed spatial structure of Trm induced by HSV-2 is sufficient for rapid elimination of infected cells but only in a portion of genital tract microregions.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpes Genitalis/immunology , Herpesvirus 2, Human/immunology , Immunologic Memory , Models, Immunological , Virus Shedding/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Chronic Disease , Herpes Genitalis/pathology , Humans , Mice
14.
J Immunol ; 199(1): 107-118, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28576979

ABSTRACT

Animal model studies highlight the role of innate-like lymphocyte populations in the early inflammatory response and subsequent parasite control following Plasmodium infection. IFN-γ production by these lymphocytes likely plays a key role in the early control of the parasite and disease severity. Analyzing human innate-like T cell and NK cell responses following infection with Plasmodium has been challenging because the early stages of infection are clinically silent. To overcome this limitation, we examined blood samples from a controlled human malaria infection (CHMI) study in a Tanzanian cohort, in which volunteers underwent CHMI with a low or high dose of Plasmodium falciparum sporozoites. The CHMI differentially affected NK, NKT (invariant NKT), and mucosal-associated invariant T cell populations in a dose-dependent manner, resulting in an altered composition of this innate-like lymphocyte compartment. Although these innate-like responses are typically thought of as short-lived, we found that changes persisted for months after the infection was cleared, leading to significantly increased frequencies of mucosal-associated invariant T cells 6 mo postinfection. We used single-cell RNA sequencing and TCR αß-chain usage analysis to define potential mechanisms for this expansion. These single-cell data suggest that this increase was mediated by homeostatic expansion-like mechanisms. Together, these data demonstrate that CHMI leads to previously unappreciated long-lasting alterations in the human innate-like lymphocyte compartment. We discuss the consequences of these changes for recurrent parasite infection and infection-associated pathologies and highlight the importance of considering host immunity and infection history for vaccine design.


Subject(s)
Immunity, Innate , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Malaria, Falciparum/immunology , Adult , Host-Pathogen Interactions , Humans , Immunity, Mucosal , Interferon-gamma/immunology , Malaria Vaccines , Malaria, Falciparum/parasitology , Male , Mucosal-Associated Invariant T Cells/immunology , Parasitemia/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/physiology , Sporozoites/immunology , Tanzania , Time Factors , Young Adult
15.
J Immunol ; 199(1): 323-335, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28566371

ABSTRACT

The significance of islet Ag-reactive T cells found in peripheral blood of type 1 diabetes (T1D) subjects is unclear, partly because similar cells are also found in healthy control (HC) subjects. We hypothesized that key disease-associated cells would show evidence of prior Ag exposure, inferred from expanded TCR clonotypes, and essential phenotypic properties in their transcriptomes. To test this, we developed single-cell RNA sequencing procedures for identifying TCR clonotypes and transcript phenotypes in individual T cells. We applied these procedures to analysis of islet Ag-reactive CD4+ memory T cells from the blood of T1D and HC individuals after activation with pooled immunodominant islet peptides. We found extensive TCR clonotype sharing in Ag-activated cells, especially from individual T1D subjects, consistent with in vivo T cell expansion during disease progression. The expanded clonotype from one T1D subject was detected at repeat visits spanning >15 mo, demonstrating clonotype stability. Notably, we found no clonotype sharing between subjects, indicating a predominance of "private" TCR specificities. Expanded clones from two T1D subjects recognized distinct IGRP peptides, implicating this molecule as a trigger for CD4+ T cell expansion. Although overall transcript profiles of cells from HC and T1D subjects were similar, profiles from the most expanded clones were distinctive. Our findings demonstrate that islet Ag-reactive CD4+ memory T cells with unique Ag specificities and phenotypes are expanded during disease progression and can be detected by single-cell analysis of peripheral blood.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Islets of Langerhans/immunology , Lymphocyte Activation , Adult , Clone Cells , Diabetes Mellitus, Type 1/blood , Female , Gene Expression Profiling , Humans , Immunologic Memory , Male , Peptides/immunology , Phenotype , Receptors, Antigen, T-Cell, alpha-beta/immunology , Sequence Analysis, RNA , Single-Cell Analysis
16.
Cytometry A ; 93(4): 402-405, 2018 04.
Article in English | MEDLINE | ID: mdl-29356334

ABSTRACT

This work describes the first 30-parameter immunophenotyping of the human dendritic cell (DC) compartment using fluorescent-based flow cytometry. The optimized panel allows for simultaneous detection of 21 myeloid-centric markers distinguishing all canonical DC subsets, with parallel enumeration of monocytes, T and B cells as well as NK cells. Thus, this panel will be useful for extensive phenotyping of immune cells from a variety of human samples limited in size.


Subject(s)
Dendritic Cells/metabolism , B-Lymphocytes/metabolism , Biomarkers/metabolism , Color , Flow Cytometry/methods , Humans , Immunophenotyping/methods , Killer Cells, Natural/metabolism , Monocytes/metabolism , Myeloid Cells/metabolism , T-Lymphocytes/metabolism
17.
J Immunol ; 192(1): 200-5, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24273000

ABSTRACT

Generating a diverse T cell memory population through vaccination is a promising strategy to overcome pathogen epitope variability and tolerance to tumor Ags. The effector and memory pool becomes broad in TCR diversity by recruiting high- and low-affinity T cells. We wanted to determine which factors dictate whether a memory T cell pool has a broad versus focused repertoire. We find that inflammation increases the magnitude of low- and high-affinity T cell responses equally well, arguing against a synergistic effect of TCR and inflammatory signals on T cell expansion. We dissect the differential effects of TCR signal strength and inflammation and demonstrate that they control effector T cell survival in a bim-dependent manner. Importantly, bim-dependent cell death is overcome with a high Ag dose in the context of an inflammatory environment. Our data define the framework for the generation of a broad T cell memory pool to inform future vaccine design.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Inflammation/immunology , Inflammation/metabolism , Membrane Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Death/genetics , Cell Death/immunology , Immunologic Memory/genetics , Membrane Proteins/genetics , Mice , Mice, Transgenic , Proto-Oncogene Proteins/genetics
18.
Blood ; 122(2): 179-87, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23719296

ABSTRACT

Despite continued progress in the development of novel antiretroviral therapies, it has become increasingly evident that drug-based treatments will not lead to a functional or sterilizing cure for HIV(+) patients. In 2009, an HIV(+) patient was effectively cured of HIV following allogeneic transplantation of hematopoietic stem cells (HSCs) from a CCR5(-/-) donor. The utility of this approach, however, is severely limited because of the difficulty in finding matched donors. Hence, we studied the potential of HIV-resistant stem cells in the autologous setting in a nonhuman primate AIDS model and incorporated a fusion inhibitor (mC46) as the means for developing infection-resistant cells. Pigtail macaques underwent identical transplants and Simian-Human Immunodeficiency Virus (SHIV) challenge procedures with the only variation between control and mC46 macaques being the inclusion of a fusion-inhibitor expression cassette. Following SHIV challenge, mC46 macaques, but not control macaques, showed a positive selection of gene-modified CD4(+) T cells in peripheral blood, gastrointestinal tract, and lymph nodes, accounting for >90% of the total CD4(+) T-cell population. mC46 macaques also maintained high frequencies of SHIV-specific, gene-modified CD4(+) T cells, an increase in nonmodified CD4(+) T cells, enhanced cytotoxic T lymphocyte function, and antibody responses. These data suggest that HSC protection may be a potential alternative to conventional antiretroviral therapy in patients with HIV/AIDS.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Recombinant Fusion Proteins/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Antigens, Viral/immunology , B-Lymphocytes/immunology , CD4 Lymphocyte Count , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/virology , Cell- and Tissue-Based Therapy , Gene Expression , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Macaca nemestrina , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load , Viremia/immunology , Viremia/virology
19.
Cytometry A ; 95(8): 925-926, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31414569
20.
Immunohorizons ; 8(2): 182-192, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38386594

ABSTRACT

T cells in the human female genital tract (FGT) are key mediators of susceptibility to and protection from infection, including HIV and other sexually transmitted infections. There is a critical need for increased understanding of the distribution and activation of T cell populations in the FGT, but current sampling methods require a healthcare provider and are expensive, limiting the ability to study these populations longitudinally. To address these challenges, we have developed a method to sample immune cells from the FGT utilizing disposable menstrual discs which are noninvasive, self-applied, and low in cost. To demonstrate reproducibility, we sampled the cervicovaginal fluid of healthy, reproductive-aged individuals using menstrual discs across 3 sequential days. Cervicovaginal fluid was processed for cervicovaginal cells, and high-parameter flow cytometry was used to characterize immune populations. We identified large numbers of live, CD45+ leukocytes, as well as distinct populations of T cells and B cells. Within the T cell compartment, activation and suppression status of T cell subsets were consistent with previous studies of the FGT utilizing current approaches, including identification of both tissue-resident and migratory populations. In addition, the T cell population structure was highly conserved across days within individuals but divergent across individuals. Our approach to sample immune cells in the FGT with menstrual discs will decrease barriers to participation and empower longitudinal sampling in future research studies.


Subject(s)
HIV Infections , Female , Humans , Adult , Reproducibility of Results , Genitalia, Female , T-Lymphocyte Subsets
SELECTION OF CITATIONS
SEARCH DETAIL