Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Environ Sci Technol ; 57(28): 10193-10200, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37399494

ABSTRACT

The potential for masks to act as fomites in the transmission of SARS-CoV-2 has been suggested but not demonstrated experimentally or observationally. In this study, we aerosolized a suspension of SARS-CoV-2 in saliva and used a vacuum pump to pull the aerosol through six different types of masks. After 1 h at 28 °C and 80% RH, SARS-CoV-2 infectivity was not detectable on an N95 and surgical mask, was reduced by 0.7 log10 on a nylon/spandex mask, and was unchanged on a polyester mask and two different cotton masks when recovered by elution in a buffer. SARS-CoV-2 RNA remained stable for 1 h on all masks. We pressed artificial skin against the contaminated masks and detected the transfer of viral RNA but no infectious virus to the skin. The potential for masks contaminated with SARS-CoV-2 in aerosols to act as fomites appears to be less than indicated by studies involving SARS-CoV-2 in very large droplets.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Masks , RNA, Viral , Respiratory Aerosols and Droplets
2.
Indoor Air ; 30(2): 326-334, 2020 03.
Article in English | MEDLINE | ID: mdl-31845419

ABSTRACT

The presence of biofilms on the cooling coils of commercial air conditioning (AC) units can significantly reduce the heat transfer efficiency of the coils and may lead to the aerosolization of microbes into occupied spaces of a building. We investigated how climate and AC operation influence the ecology of microbial communities on AC coils. Forty large-scale commercial ACs were considered with representation from warm-humid and hot-dry climates. Both bacterial and fungal ecologies, including richness and taxa, on the cooling coil surfaces were significantly impacted by outdoor climate, through differences in dew point that result in increased moisture (condensate) on coils, and by the minimum efficiency reporting value (MERV 8 vs MERV 14) of building air filters. Based on targeted qPCR and sequence analysis, low efficiency upstream filters (MERV 8) were associated with a greater abundance of pathogenic bacteria and medically relevant fungi. As the implementation of air conditioning continues to grow worldwide, better understanding of the factors impacting microbial growth and ecology on cooling coils should enable more rational approaches for biofilm control and ultimately result in reduced energy consumption and healthier buildings.


Subject(s)
Air Conditioning , Air Microbiology , Air Pollution, Indoor/analysis , Environmental Monitoring , Fungi/growth & development , Climate , Ecology , Microbiota
3.
J Infect Dis ; 218(5): 739-747, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29878137

ABSTRACT

Pandemic and seasonal influenza viruses can be transmitted through aerosols and droplets, in which viruses must remain stable and infectious across a wide range of environmental conditions. Using humidity-controlled chambers, we studied the impact of relative humidity on the stability of 2009 pandemic influenza A(H1N1) virus in suspended aerosols and stationary droplets. Contrary to the prevailing paradigm that humidity modulates the stability of respiratory viruses in aerosols, we found that viruses supplemented with material from the apical surface of differentiated primary human airway epithelial cells remained equally infectious for 1 hour at all relative humidities tested. This sustained infectivity was observed in both fine aerosols and stationary droplets. Our data suggest, for the first time, that influenza viruses remain highly stable and infectious in aerosols across a wide range of relative humidities. These results have significant implications for understanding the mechanisms of transmission of influenza and its seasonality.


Subject(s)
Aerosols , Humidity , Influenza A Virus, H1N1 Subtype/physiology , Microbial Viability , Cells, Cultured , Environmental Exposure , Epithelial Cells/virology , Humans , Time Factors
4.
Appl Environ Microbiol ; 84(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29625986

ABSTRACT

Infectious diseases caused by enveloped viruses, such as influenza, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS), cause thousands of deaths and billions of dollars of economic losses per year. Studies have found a relationship among temperature, humidity, and influenza virus incidence, transmission, or survival; however, there are contradictory claims about whether absolute humidity (AH) or relative humidity (RH) is most important in mediating virus infectivity. Using the enveloped bacteriophage Phi6, which has been suggested as a surrogate for influenza viruses and coronaviruses, we designed a study to discern whether AH, RH, or temperature is a better predictor of virus survival in droplets. Our results show that Phi6 survived best at high (>85%) and low (<60%) RHs, with a significant decrease in infectivity at mid-range RHs (∼60 to 85%). At an AH of less than 22 g · m-3, the loss in infectivity was less than 2 orders of magnitude; however, when the AH was greater than 22 g · m-3, the loss in infectivity was typically greater than 6 orders of magnitude. At a fixed RH of 75%, infectivity was very sensitive to temperature, decreasing two orders of magnitude between 19°C and 25°C. We used random forest modeling to identify the best environmental predictors for modulating virus infectivity. The model explained 83% of variation in Phi6 infectivity and suggested that RH is the most important factor in controlling virus infectivity in droplets. This research provides novel information about the complex interplay between temperature, humidity, and the survival of viruses in droplets.IMPORTANCE Enveloped viruses are responsible for a number of infectious diseases resulting in thousands of deaths and billions of dollars of economic losses per year in the United States. There has been a lively debate in the literature over whether absolute humidity (AH) or relative humidity (RH) modulates virus infectivity. We designed a controlled study and used advanced statistical modeling techniques specifically to address this question. By providing an improved understanding of the relationship between environmental conditions and virus infectivity, our work will ultimately lead to improved strategies for predicting and controlling disease transmission.


Subject(s)
Bacteriophages/physiology , Humidity , Lipid Droplets/virology , Temperature , Virus Inactivation , Virus Physiological Phenomena
5.
Environ Sci Technol ; 51(14): 7759-7774, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28677960

ABSTRACT

The "exposome" is a term describing the summation of one's lifetime exposure to microbes and chemicals. Such exposures are now recognized as major drivers of human health and disease. Because humans spend ∼90% of their time indoors, the built environment exposome merits particular attention. Herein we utilize an engineering perspective to advance understanding of the factors that shape the built environment exposome and its influence on human wellness and disease, while simultaneously informing development of a framework for intentionally controlling the exposome to protect public health. Historically, engineers have been focused on controlling chemical and physical contaminants and on eradicating microbes; however, there is a growing awareness of the role of "beneficial" microbes. Here we consider the potential to selectively control the materials and chemistry of the built environment to positively influence the microbial and chemical components of the indoor exposome. Finally, we discuss research gaps that must be addressed to enable intentional engineering design, including the need to define a "healthy" built environment exposome and how to control it.


Subject(s)
Environment Design , Public Health , Environmental Exposure , Humans
6.
Build Environ ; 123: 684-695, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29104349

ABSTRACT

Legionella is a genus of pathogenic Gram-negative bacteria responsible for a serious disease known as legionellosis, which is transmitted via inhalation of this pathogen in aerosol form. There are two forms of legionellosis: Legionnaires' disease, which causes pneumonia-like symptoms, and Pontiac fever, which causes influenza-like symptoms. Legionella can be aerosolized from various water sources in the built environment including showers, faucets, hot tubs/swimming pools, cooling towers, and fountains. Incidence of the disease is higher in the summertime, possibly because of increased use of cooling towers for air conditioning systems and differences in water chemistry when outdoor temperatures are higher. Although there have been decades of research related to Legionella transmission, many knowledge gaps remain. While conventional wisdom suggests that showering is an important source of exposure in buildings, existing measurements do not provide strong support for this idea. There has been limited research on the potential for Legionella transmission through heating, ventilation, and air conditioning (HVAC) systems. Epidemiological data suggest a large proportion of legionellosis cases go unreported, as most people who are infected do not seek medical attention. Additionally, controlled laboratory studies examining water-to-air transfer and source tracking are still needed. Herein, we discuss ten questions that spotlight current knowledge about Legionella transmission in the built environment, engineering controls that might prevent future disease outbreaks, and future research that is needed to advance understanding of transmission and control of legionellosis.

7.
Nucleic Acids Res ; 41(2): 754-63, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23180800

ABSTRACT

The DNA-binding specificity and affinity of the dimeric human transcription factor (TF) STAT1, were assessed by total internal reflectance fluorescence protein-binding microarrays (TIRF-PBM) to evaluate the effects of protein phosphorylation, higher-order polymerization and small-molecule inhibition. Active, phosphorylated STAT1 showed binding preferences consistent with prior characterization, whereas unphosphorylated STAT1 showed a weak-binding preference for one-half of the GAS consensus site, consistent with recent models of STAT1 structure and function in response to phosphorylation. This altered-binding preference was further tested by use of the inhibitor LLL3, which we show to disrupt STAT1 binding in a sequence-dependent fashion. To determine if this sequence-dependence is specific to STAT1 and not a general feature of human TF biology, the TF Myc/Max was analysed and tested with the inhibitor Mycro3. Myc/Max inhibition by Mycro3 is sequence independent, suggesting that the sequence-dependent inhibition of STAT1 may be specific to this system and a useful target for future inhibitor design.


Subject(s)
DNA/metabolism , STAT1 Transcription Factor/metabolism , Base Sequence , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , DNA/chemistry , Phosphorylation , Protein Multimerization , Proto-Oncogene Proteins c-myc/metabolism , Repressor Proteins/metabolism , STAT1 Transcription Factor/antagonists & inhibitors , STAT1 Transcription Factor/chemistry
8.
Plant Dis ; 98(11): 1494-1502, 2014 Nov.
Article in English | MEDLINE | ID: mdl-30699792

ABSTRACT

Management of grape powdery mildew (Erysiphe necator) using quinone outside inhibitors (QoIs) has eroded in an increasing number of regions due to resistance development. To determine persistence of resistance when QoIs are withdrawn, competition assays were conducted on unsprayed grape plants (Vitis vinifera 'Chardonnay') by cycling mixtures of resistant and sensitive isolates characterized as genetically diverse based on microsatellite analyses. Under laboratory conditions, %G143A, quantified by quantitative polymerase chain reaction (qPCR), increased significantly, indicating competitiveness of the resistant fraction. To confirm competitiveness in the field, trials using potted plants were conducted. Percent G143A tended to decrease in one growing season, probably due to spore migration and mixing of populations with natural background inoculum. In a second season, QoI resistance persisted at high frequency for 4 weeks. Resistant populations were also found to persist in one vineyard without QoI application for four consecutive years. The frequency was still about 25% in the fourth year, with higher frequency (36%) in a hotspot section. QoI-resistant populations with >5% G143A also harbored Y136F in the cyp51 gene that confers some resistance to sterol demethylation inhibitors, another fungicide class for powdery mildew control. Double resistance could have been partly responsible for persistence of QoI resistance at this location.

9.
Plant Dis ; 98(4): 504-511, 2014 Apr.
Article in English | MEDLINE | ID: mdl-30708717

ABSTRACT

The fungus Fusarium graminearum causes Fusarium head blight (FHB) of wheat. Little is known about dispersal of the fungus from field-scale sources of inoculum. We monitored the movement of a clonal isolate of F. graminearum from a 3,716 m2 (0.372 ha) source of inoculum over two field seasons. Ground-based collection devices were placed at distances of 0 (in the source), 100, 250, 500, 750, and 1,000 m from the center of the clonal sources of inoculum. Three polymorphic microsatellites were used to identify the released clone from 1,027 isolates (790 in 2011 and 237 in 2012) of the fungus. Results demonstrated that the recovery of the released clone decreased at greater distances from the source. The majority (87%, 152/175 in 2011; 77%, 74/96 in 2012) of the released clone was recaptured during the night (1900 to 0700). The released clone was recovered up to 750 m from the source. Recovery of the released clone followed a logistic regression model and was significant (P < 0.041 for all slope term scenarios) as a function of distance from the source of inoculum. This work offers a means to experimentally determine the dispersal kernel of a plant pathogen, and could be integrated into management strategies for FHB.

10.
Plant Dis ; 98(4): 497-503, 2014 Apr.
Article in English | MEDLINE | ID: mdl-30708724

ABSTRACT

Fusarium head blight (FHB) is a devastating disease of wheat and barley caused by the fungus Fusarium graminearum. The fungus produces spores that may be transported over long distances in the atmosphere. In order to predict the atmospheric transport of F. graminearum, the production and release of ascospores must be known. We conducted a series of laboratory and field experiments to estimate perithecia production and ascospore release from a field-scale source of F. graminearum inoculum. Perithecia were generated on artificial (carrot agar) and natural (corn stalk) substrates. Artificial substrates produced 15 ± 0.4 perithecia/cm2, and natural substrates produced 44 ± 2 perithecia/cm2. Eighty perithecia were excised from both substrate types and allowed to release ascospores every 24 h. Perithecia generated from artificial and natural substrates released a mean of 104 ± 5 and 276 ± 16 ascospores over 10 days, respectively. A volumetric spore trap was placed inside a 1-acre clonal source of inoculum in 2011 and 2012. Results indicated that ascospores were released predominantly during the night (1900 to 0700). Estimates of ascospore production for our field-scale sources of inoculum were approximately 400 million ascospores/day for 10 days. Mathematical models can use estimates of ascospore production to assist in predicting the transport of F. graminearum.

11.
PNAS Nexus ; 1(5): pgac145, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36712351

ABSTRACT

Nontuberculous mycobacteria (NTM) are frequently present in municipal drinking water and building plumbing, and some are believed to cause respiratory tract infections through inhalation of NTM-containing aerosols generated during showering. However, the present understanding of NTM transfer from water to air is insufficient to develop NTM risk mitigation strategies. This study aimed to characterize the contribution of shower water to the abundance of viable NTM in indoor air. Shower water and indoor air samples were collected, and 16S rRNA and rpoB genes were sequenced. The sequencing results showed that running the shower impacted the bacterial community structure and NTM species composition in indoor air by transferring certain bacteria from water to air. A mass balance model combined with NTM quantification results revealed that on average 1/132 and 1/254 of NTM cells in water were transferred to air during 1 hour of showering using a rain and massage showerhead, respectively. A large fraction of the bacteria transferred from water to air were membrane-damaged, i.e. they had compromised membranes based on analysis by live/dead staining and flow cytometry. However, the damaged NTM in air were recoverable as shown by growth in a culture medium mimicking the respiratory secretions of people with cystic fibrosis, implying a potential infection risk by NTM introduced to indoor air during shower running. Among the recovered NTM, Mycobacterium mucogenicum was the dominant species as determined by rpoB gene sequencing. Overall, this study lays the groundwork for future pathogen risk management and public health protection in the built environment.

12.
mBio ; 12(5): e0252721, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34663099

ABSTRACT

Respiratory viruses such as SARS-CoV-2 are transmitted in respiratory droplets and aerosol particles, which are released during talking, breathing, coughing, and sneezing. Noncontact transmission of SARS-CoV-2 has been demonstrated, suggesting transmission via virus carried through the air. Here, we demonstrate that golden Syrian hamsters produce infectious SARS-CoV-2 in aerosol particles prior to and concurrent with the onset of mild clinical signs of disease. The average emission rate in this study was 25 infectious virions/hour on days 1 and 2 postinoculation, with average viral RNA levels 200-fold higher than infectious virus in aerosol particles. The majority of virus was contained within particles <5 µm in size. Thus, we provide direct evidence that, in hamsters, SARS-CoV-2 is an airborne virus. IMPORTANCE SARS-CoV-2 is a respiratory virus and has been isolated from the air near COVID-19 patients. Here, using a hamster model of infection, we demonstrate that SARS-CoV-2 is emitted in aerosol particles prior to and concurrent with the onset of mild disease. Virus is contained primarily within aerosol particles <5 µm in size, which can remain airborne and be inhaled. These findings indicate that SARS-CoV-2 is an airborne virus and support the use of ventilation to reduce SARS-CoV-2 transmission.


Subject(s)
Aerosols , COVID-19/transmission , SARS-CoV-2/pathogenicity , Animals , COVID-19/metabolism , Chlorocebus aethiops , Cricetinae , Mesocricetus , Real-Time Polymerase Chain Reaction , Vero Cells
13.
Otolaryngol Head Neck Surg ; 164(6): 1186-1192, 2021 06.
Article in English | MEDLINE | ID: mdl-33079009

ABSTRACT

OBJECTIVE: To analyze patients' return to normal activity, pain scores, narcotic use, and adverse events after undergoing tonsillectomy or adenotonsillectomy with monopolar electrocautery or radiofrequency ablation. STUDY DESIGN: Randomized double-blinded clinical trial based on prospective parallel design. SETTING: Academic medical center and tertiary children's hospital between March 2018 and July 2019. METHODS: Inclusion criteria included patients aged ≥3 years with surgical indication of recurrent tonsillitis or airway obstruction/sleep-disordered breathing. Patients were randomly assigned to monopolar electrocautery or radiofrequency ablation. Patients were blinded to treatment assignment. Survey questions answered via text or email were collected daily until postoperative day 15. The primary outcome was the patient's return to normal activity. Secondary outcomes included daily pain score, total amount of postoperative narcotic use, and adverse events. RESULTS: Of the 236 patients who met inclusion criteria and were randomly assigned to radiofrequency ablation or monopolar electrocautery, 230 completed the study (radiofrequency ablation, n = 112; monopolar electrocautery, n = 118). There was no statistically significant difference between the groups in the number of days for return to normal activity (P = .89), daily pain scores over 15 postoperative days (P = .46), postoperative narcotic use (P = .61), or return to hospital for any reason (P = .60), including bleeding as an adverse event (P = .13). CONCLUSIONS: As one of the largest randomized controlled trials examining instrumentation in tonsillectomy, our data do not show a difference between monopolar electrocautery and radiofrequency ablation with regard to return to normal activity, daily pain scores, total postoperative narcotic use, or adverse events.


Subject(s)
Adenoidectomy/methods , Electrocoagulation , Radiofrequency Ablation , Tonsillectomy/methods , Adolescent , Child , Child, Preschool , Double-Blind Method , Female , Humans , Male , Prospective Studies , Treatment Outcome
14.
Water Res ; 194: 116907, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33610927

ABSTRACT

The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.


Subject(s)
Cyanobacteria , High-Throughput Nucleotide Sequencing , Cyanobacteria/genetics , Harmful Algal Bloom , Wastewater , Water
15.
Article in English | MEDLINE | ID: mdl-32150930

ABSTRACT

This article describes a collaboration among a group of university faculty, undergraduate students, local governments, local residents, and U.S. Army staff to address long-standing concerns about the environmental health effects of an Army ammunition plant. The authors describe community-responsive scientific pilot studies that examined potential environmental contamination and a related undergraduate research course that documented residents' concerns, contextualized those concerns, and developed recommendations. We make a case for the value of resource-intensive university-community partnerships that promote the production of knowledge through collaborations across disciplinary paradigms (natural/physical sciences, social sciences, health sciences, and humanities) in response to questions raised by local residents. Our experience also suggests that enacting this type of research through a university class may help promote researchers' adoption of "epistemological pluralism", and thereby facilitate the movement of a study from being "multidisciplinary" to "transdisciplinary".


Subject(s)
Environmental Health , Public Health , Public-Private Sector Partnerships , Humans , Interdisciplinary Communication , Research Personnel , Universities , Virginia
16.
Microbiome ; 8(1): 1, 2020 01 04.
Article in English | MEDLINE | ID: mdl-31901242

ABSTRACT

BACKGROUND: During a period of rapid growth in our understanding of the microbiology of the built environment in recent years, the majority of research has focused on bacteria and fungi. Viruses, while probably as numerous, have received less attention. In response, the Alfred P. Sloan Foundation supported a workshop entitled "Viruses in the Built Environment (VIBE)," at which experts in environmental engineering, environmental microbiology, epidemiology, infection prevention, fluid dynamics, occupational health, metagenomics, and virology convened to synthesize recent advances and identify key research questions and knowledge gaps regarding viruses in the built environment. RESULTS: Four primary research areas and funding priorities were identified. First, a better understanding of viral communities in the built environment is needed, specifically which viruses are present and their sources, spatial and temporal dynamics, and interactions with bacteria. Second, more information is needed about viruses and health, including viral transmission in the built environment, the relationship between virus detection and exposure, and the definition of a healthy virome. The third research priority is to identify and evaluate interventions for controlling viruses and the virome in the built environment. This encompasses interactions among viruses, buildings, and occupants. Finally, to overcome the challenge of working with viruses, workshop participants emphasized that improved sampling methods, laboratory techniques, and bioinformatics approaches are needed to advance understanding of viruses in the built environment. CONCLUSIONS: We hope that identifying these key questions and knowledge gaps will engage other investigators and funding agencies to spur future research on the highly interdisciplinary topic of viruses in the built environment. There are numerous opportunities to advance knowledge, as many topics remain underexplored compared to our understanding of bacteria and fungi. Video abstract.


Subject(s)
Built Environment , Congresses as Topic , Virus Diseases/transmission , Virus Physiological Phenomena , Viruses/isolation & purification , Computational Biology , Humans , Metagenomics , Viruses/genetics
17.
Microbiome ; 7(1): 53, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30935423

ABSTRACT

BACKGROUND: Viruses play an important role in ecosystems, including the built environment (BE). While numerous studies have characterized bacterial and fungal microbiomes in the BE, few have focused on the viral microbiome (virome). Longitudinal microbiome studies provide insight into the stability and dynamics of microbial communities; however, few such studies exist for the microbiome of the BE, and most have focused on bacteria. Here, we present a longitudinal, metagenomic-based analysis of the airborne DNA and RNA virome of a children's daycare center. Specifically, we investigate how the airborne virome varies as a function of season and human occupancy, and we identify possible sources of the viruses and their hosts, mainly humans, animals, plants, and insects. RESULTS: Season strongly influenced the airborne viral community composition, and a single sample collected when the daycare center was unoccupied suggested that occupancy also influenced the community. The pattern of influence differed between DNA and RNA viromes. Human-associated viruses were much more diverse and dominant in the winter, while the summertime virome contained a high relative proportion and diversity of plant-associated viruses. CONCLUSIONS: This airborne microbiome in this building exhibited seasonality in its viral community but not its bacterial community. Human occupancy influenced both types of communities. By adding new data about the viral microbiome to complement burgeoning information about the bacterial and fungal microbiomes, this study contributes to a more complete understanding of the airborne microbiome.


Subject(s)
Air Microbiology , Bacteria/classification , Metagenomics/methods , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Viruses/classification , Bacteria/genetics , Bacteria/isolation & purification , Child Day Care Centers , Child, Preschool , DNA, Viral/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Longitudinal Studies , Male , Phylogeny , RNA, Viral/genetics , Seasons , Viruses/genetics , Viruses/isolation & purification
18.
J Inorg Biochem ; 102(4): 731-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18262277

ABSTRACT

Methods for the study of DNA photocleavage are illustrated using a mixed-metal supramolecular complex [{(bpy)(2)Ru(dpp)}(2)RhCl(2)]Cl(5). The methods use supercoiled pUC18 plasmid as a DNA probe and either filtered light from a xenon arc lamp source or monochromatic light from a newly designed, high-intensity light-emitting diode (LED) array. Detailed methods for performing the photochemical experiments and analysis of the DNA photoproduct are delineated. Detailed methods are also given for building an LED array to be used for DNA photolysis experiments. The Xe arc source has a broad spectral range and high light flux. The LEDs have a high-intensity, nearly monochromatic output. Arrays of LEDs have the advantage of allowing tunable, accurate output to multiple samples for high-throughput photochemistry experiments at relatively low cost.


Subject(s)
DNA, Superhelical/radiation effects , Light , Xenon , DNA, Superhelical/chemistry , Electrophoresis, Agar Gel , Hydrolysis , Models, Molecular , Photochemistry
19.
Front Microbiol ; 9: 1668, 2018.
Article in English | MEDLINE | ID: mdl-30158904

ABSTRACT

Biological aerosols (bioaerosols) are ubiquitous in terrestrial and aquatic environments and may influence cloud formation and precipitation processes. Little is known about the aerosolization and transport of bioaerosols from aquatic environments. We designed and deployed a bioaerosol-sampling system onboard an unmanned surface vehicle (USV; a remotely operated boat) to collect microbes and monitor particle sizes in the atmosphere above a salt pond in Falmouth, MA, United States and a freshwater lake in Dublin, VA, United States. The bioaerosol-sampling system included a series of 3D-printed impingers, two different optical particle counters, and a weather station. A small unmanned aircraft system (sUAS; a remotely operated airplane) was used in a coordinated effort with the USV to collect microorganisms on agar media 50 m above the surface of the water. Samples from the USV and sUAS were cultured on selective media to estimate concentrations of culturable microorganisms (bacteria and fungi). Concentrations of microbes from the sUAS ranged from 6 to 9 CFU/m3 over saltwater, and 12 to 16 CFU/m3 over freshwater (over 10-min sampling intervals) at 50 m above ground level (AGL). Concentrations from the USV ranged from 0 (LOD) to 42,411 CFU/m3 over saltwater, and 0 (LOD) to 56,809 CFU/m3 over freshwater (over 30-min sampling intervals) in air near the water surface. Particle concentrations recorded onboard the USV ranged from 0 (LOD) to 288 µg/m3 for PM1, 1 to 290 µg/m3 for PM2.5, and 1 to 290 µg/m3 for PM10. A general trend of increasing concentration with an increase in particle size was recorded by each sensor. Through laboratory testing, the collection efficiency of the 3D-printed impingers was determined to be 75% for 1 µm beads and 99% for 3 µm beads. Additional laboratory tests were conducted to determine the accuracy of the miniaturized optical particle counters used onboard the USV. Future work aims to understand the distribution of bioaerosols above aquatic environments and their potential association with cloud formation and precipitation processes.

20.
FEMS Microbiol Ecol ; 94(3)2018 03 01.
Article in English | MEDLINE | ID: mdl-29346534

ABSTRACT

We characterized the microbial communities in sea spray aerosols (SSA), water and sand of three beaches in central California (Cowell Beach, Baker Beach and Lovers Point) by sequencing the V4 region of the 16S rRNA gene. Average concentrations of 16S rRNA genes in SSA ranged from 2.4 × 104 to 1.4 × 105 gene copies per m3 of air. A total of 9781 distinct OTUs were identified in SSA and of these, 1042 OTUs were found in SSA of all beaches. SSA microbial communities included marine taxa, as well as some associated with the terrestrial environment. SSA taxa included organisms that play important roles in biogeochemical cycling of elements such as Planctomyces and Synechococcus, as well as those representing potential pathogens and fecal indicator bacteria including Staphylococcus epidermidis and Enterococcus spp. There were a large number of shared OTUs among SSA and water, and there was relatively high similarity between SSA and water communities. Results are consistent with a conceptual model where SSA is generated by breaking waves and bubble bursting in marine waters and that enables the transport of microorganisms from the sea to sand or other environments.


Subject(s)
Aerosols/analysis , Bacteria/isolation & purification , Microbiota , Bacteria/classification , Bacteria/genetics , Bathing Beaches , California , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL