Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nature ; 594(7863): 442-447, 2021 06.
Article in English | MEDLINE | ID: mdl-34079126

ABSTRACT

Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.


Subject(s)
Colorectal Neoplasms/pathology , Intestine, Small/pathology , Neoplastic Stem Cells/pathology , Oncogenes , Stem Cell Niche , Animals , Clone Cells/pathology , Colorectal Neoplasms/genetics , Female , Intestine, Small/metabolism , Male , Mice , Mutation , Neoplastic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Reproducibility of Results , Single-Cell Analysis , Stem Cell Niche/genetics , Tumor Microenvironment , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway
2.
Mol Metab ; 43: 101118, 2021 01.
Article in English | MEDLINE | ID: mdl-33221554

ABSTRACT

OBJECTIVES: Combinatorial therapies are under intense investigation to develop more efficient anti-obesity drugs; however, little is known about how they act in the brain to produce enhanced anorexia and weight loss. The goal of this study was to identify the brain sites and neuronal populations engaged during the co-administration of GLP-1R and CCK1R agonists, an efficient combination therapy in obese rodents. METHODS: We measured acute and long-term feeding and body weight responses and neuronal activation patterns throughout the neuraxis and in specific neuronal subsets in response to GLP-1R and CCK1R agonists administered alone or in combination in lean and high-fat diet fed mice. We used PhosphoTRAP to obtain unbiased molecular markers for neuronal populations selectively activated by the combination of the two agonists. RESULTS: The initial anorectic response to GLP-1R and CCK1R co-agonism was mediated by a reduction in meal size, but over a few hours, a reduction in meal number accounted for the sustained feeding suppressive effects. The nucleus of the solitary tract (NTS) is one of the few brain sites where GLP-1R and CCK1R signalling interact to produce enhanced neuronal activation. None of the previously categorised NTS neuronal subpopulations relevant to feeding behaviour were implicated in this increased activation. However, we identified NTS/AP Calcrl+ neurons as treatment targets. CONCLUSIONS: Collectively, these studies indicated that circuit-level integration of GLP-1R and CCK1R co-agonism in discrete brain nuclei including the NTS produces enhanced rapid and sustained appetite suppression and weight loss.


Subject(s)
Glucagon-Like Peptide-1 Receptor/metabolism , Obesity/drug therapy , Receptors, Cholecystokinin/metabolism , Animals , Anti-Obesity Agents/pharmacology , Appetite Regulation , Brain/metabolism , Diet, High-Fat , Eating/drug effects , Feeding Behavior/drug effects , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide-1 Receptor/drug effects , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Obesity/metabolism , Solitary Nucleus/metabolism , Weight Loss/drug effects
3.
PLoS One ; 10(10): e0140988, 2015.
Article in English | MEDLINE | ID: mdl-26505995

ABSTRACT

Ewing's sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing's sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing's sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing's sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing's sarcoma patients with PARP inhibitors.


Subject(s)
Dacarbazine/analogs & derivatives , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Poly(ADP-ribose) Polymerases/biosynthesis , Sarcoma, Ewing/genetics , Apoptosis/drug effects , Cell Line, Tumor , DNA Breaks, Double-Stranded/drug effects , DNA Breaks, Single-Stranded/drug effects , DNA Damage/drug effects , DNA Damage/genetics , DNA Repair/genetics , Dacarbazine/administration & dosage , Homologous Recombination/genetics , Humans , Poly (ADP-Ribose) Polymerase-1 , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/pathology , Temozolomide
4.
Pigment Cell Melanoma Res ; 25(3): 312-25, 2012 May.
Article in English | MEDLINE | ID: mdl-22420299

ABSTRACT

c-Myc is involved in the control of diverse cellular processes and implicated in the maintenance of different tissues including the neural crest. Here, we report that c-Myc is particularly important for pigment cell development and homeostasis. Targeting c-Myc specifically in the melanocyte lineage using the floxed allele of c-Myc and Tyr::Cre transgenic mice results in a congenital gray hair phenotype. The gray coat color is associated with a reduced number of functional melanocytes in the hair bulb and melanocyte stem cells in the hair bulge. Importantly, the gray phenotype does not progress with time, suggesting that maintenance of the melanocyte through the hair cycle does not involve c-Myc function. In embryos, at E13.5, c-Myc-deficient melanocyte precursors are affected in proliferation in concordance with a reduction in numbers, showing that c-Myc is required for the proper melanocyte development. Interestingly, melanocytes from c-Myc-deficient mice display elevated levels of the c-Myc paralog N-Myc. Double deletion of c-Myc and N-Myc results in nearly complete loss of the residual pigmentation, indicating that N-Myc is capable of compensating for c-Myc loss of function in melanocytes.


Subject(s)
Genes, myc , Hair Color/genetics , Hair Diseases/genetics , Melanocytes/metabolism , Animals , Embryo, Mammalian , Gene Deletion , Gene Expression Regulation, Developmental , Genes, myc/genetics , Genes, myc/physiology , Melanocytes/pathology , Mice , Mice, Transgenic , Organ Specificity/genetics , Pigmentation/genetics , Pigmentation Disorders/genetics , Skin Pigmentation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL