Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 23(6): 927-939, 2022 06.
Article in English | MEDLINE | ID: mdl-35624205

ABSTRACT

Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.


Subject(s)
Lung Injury , Respiratory Distress Syndrome , Animals , Humans , Hypoxia/etiology , Inflammation/complications , Lung , Lung Injury/complications , Mice
3.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34625491

ABSTRACT

Highly resolved spatial data of complex systems encode rich and nonlinear information. Quantification of heterogeneous and noisy data-often with outliers, artifacts, and mislabeled points-such as those from tissues, remains a challenge. The mathematical field that extracts information from the shape of data, topological data analysis (TDA), has expanded its capability for analyzing real-world datasets in recent years by extending theory, statistics, and computation. An extension to the standard theory to handle heterogeneous data is multiparameter persistent homology (MPH). Here we provide an application of MPH landscapes, a statistical tool with theoretical underpinnings. MPH landscapes, computed for (noisy) data from agent-based model simulations of immune cells infiltrating into a spheroid, are shown to surpass existing spatial statistics and one-parameter persistent homology. We then apply MPH landscapes to study immune cell location in digital histology images from head and neck cancer. We quantify intratumoral immune cells and find that infiltrating regulatory T cells have more prominent voids in their spatial patterns than macrophages. Finally, we consider how TDA can integrate and interrogate data of different types and scales, e.g., immune cell locations and regions with differing levels of oxygenation. This work highlights the power of MPH landscapes for quantifying, characterizing, and comparing features within the tumor microenvironment in synthetic and real datasets.


Subject(s)
Head and Neck Neoplasms/diagnostic imaging , Macrophages/cytology , T-Lymphocytes, Regulatory/cytology , Tumor Hypoxia/physiology , Tumor Microenvironment/immunology , Cell Count/methods , Computational Biology/methods , Computer Simulation , Data Analysis , Head and Neck Neoplasms/immunology , Humans , Macrophages/immunology , Spheroids, Cellular , T-Lymphocytes, Regulatory/immunology
4.
J Pathol ; 250(5): 593-611, 2020 04.
Article in English | MEDLINE | ID: mdl-32086807

ABSTRACT

In this review article, we examine the importance of low levels of oxygen (hypoxia) in cancer biology. We provide a brief description of how mammalian cells sense oxygen. The hypoxia-inducible factor (HIF) pathway is currently the best characterised oxygen-sensing system, but recent work has revealed that mammals also use an oxygen-sensing system found in plants to regulate the abundance of some proteins and peptides with an amino-terminal cysteine residue. We discuss how the HIF pathway is affected during the growth of solid tumours, which develop in microenvironments with gradients of oxygen availability. We then introduce the concept of 'pseudohypoxia', a state of constitutive, oxygen-independent HIF system activation that occurs due to oncogenic stimulation in a number of specific tumour types that are of immediate relevance to diagnostic histopathologists. We provide an overview of the different methods of quantifying tumour hypoxia, emphasising the importance of pre-analytic factors in interpreting the results of tissue-based studies. Finally, we review recent approaches to targeting hypoxia/HIF system activation for therapeutic benefit, the application of which may require knowledge of which hypoxia signalling components are being utilised by a given tumour. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Neoplasms/pathology , Oxygen/metabolism , Tumor Hypoxia/physiology , Tumor Microenvironment/physiology , Animals , Cell Hypoxia/physiology , Humans , Hypoxia/pathology , Neoplasms/diagnosis
5.
J Physiol ; 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29917232

ABSTRACT

KEY POINTS: The carotid body is a peripheral arterial chemoreceptor that regulates ventilation in response to both acute and sustained hypoxia. Type I cells in this organ respond to low oxygen both acutely by depolarization and dense core vesicle secretion and, over the longer term, via cellular proliferation and enhanced ventilatory responses. Using lineage analysis, the present study shows that the Type I cell lineage itself proliferates and expands in response to sustained hypoxia. Inactivation of HIF-2α in Type I cells impairs the ventilatory, proliferative and cell intrinsic (dense core vesicle) responses to hypoxia. Inactivation of PHD2 in Type I cells induces multilineage hyperplasia and ultrastructural changes in dense core vesicles to form paraganglioma-like carotid bodies. These changes, similar to those observed in hypoxia, are dependent on HIF-2α. Taken together, these findings demonstrate a key role for the PHD2-HIF-2α couple in Type I cells with respect to the oxygen sensing functions of the carotid body. ABSTRACT: The carotid body is a peripheral chemoreceptor that plays a central role in mammalian oxygen homeostasis. In response to sustained hypoxia, it manifests a rapid cellular proliferation and an associated increase in responsiveness to hypoxia. Understanding the cellular and molecular mechanisms underlying these processes is of interest both to specialized chemoreceptive functions of that organ and, potentially, to the general physiology and pathophysiology of cellular hypoxia. We have combined cell lineage tracing technology and conditionally inactivated alleles in recombinant mice to examine the role of components of the HIF hydroxylase pathway in specific cell types within the carotid body. We show that exposure to sustained hypoxia (10% oxygen) drives rapid expansion of the Type I, tyrosine hydroxylase expressing cell lineage, with little transdifferentiation to (or from) that lineage. Inactivation of a specific HIF isoform, HIF-2α, in the Type I cells was associated with a greatly reduced proliferation of Type I cells and hypoxic ventilatory responses, with ultrastructural evidence of an abnormality in the action of hypoxia on dense core secretory vesicles. We also show that inactivation of the principal HIF prolyl hydroxylase PHD2 within the Type I cell lineage is sufficient to cause multilineage expansion of the carotid body, with characteristics resembling paragangliomas. These morphological changes were dependent on the integrity of HIF-2α. These findings implicate specific components of the HIF hydroxylase pathway (PHD2 and HIF-2α) within Type I cells of the carotid body with respect to the oxygen sensing and adaptive functions of that organ.

6.
Exp Cell Res ; 356(2): 116-121, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28315322

ABSTRACT

Investigation into the regulation of the erythropoietin gene by oxygen led to the discovery of a process of direct oxygen sensing that transduces many cellular and systemic responses to hypoxia. The oxygen-sensitive signal is generated through the catalytic action of a series of 2-oxoglutarate-dependent oxygenases that regulate the transcription factor hypoxia-inducible factor (HIF) by the post-translational hydroxylation of specific amino acid residues. Here we review the implications of the unforeseen complexity of the HIF transcriptional cascade for the physiology and pathophysiology of hypoxia, and consider the origins of post-translational hydroxylation as a signaling process.


Subject(s)
Hypoxia/metabolism , Neoplasms/metabolism , Oxygen/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , Animals , Humans , Hydroxylation/physiology
7.
J Biol Chem ; 291(39): 20661-73, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27502280

ABSTRACT

The hypoxia-inducible factor (HIF) system orchestrates cellular responses to hypoxia in animals. HIF is an α/ß-heterodimeric transcription factor that regulates the expression of hundreds of genes in a tissue context-dependent manner. The major hypoxia-sensing component of the HIF system involves oxygen-dependent catalysis by the HIF hydroxylases; in humans there are three HIF prolyl hydroxylases (PHD1-3) and an asparaginyl hydroxylase (factor-inhibiting HIF (FIH)). PHD catalysis regulates HIFα levels, and FIH catalysis regulates HIF activity. How differences in HIFα hydroxylation status relate to variations in the induction of specific HIF target gene transcription is unknown. We report studies using small molecule HIF hydroxylase inhibitors that investigate the extent to which HIF target gene expression is induced by PHD or FIH inhibition. The results reveal substantial differences in the role of prolyl and asparaginyl hydroxylation in regulating hypoxia-responsive genes in cells. PHD inhibitors with different structural scaffolds behave similarly. Under the tested conditions, a broad-spectrum 2-oxoglutarate dioxygenase inhibitor is a better mimic of the overall transcriptional response to hypoxia than the selective PHD inhibitors, consistent with an important role for FIH in the hypoxic transcriptional response. Indeed, combined application of selective PHD and FIH inhibitors resulted in the transcriptional induction of a subset of genes not fully responsive to PHD inhibition alone. Thus, for the therapeutic regulation of HIF target genes, it is important to consider both PHD and FIH activity, and in the case of some sets of target genes, simultaneous inhibition of the PHDs and FIH catalysis may be preferable.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Hypoxia-Inducible Factor-Proline Dioxygenases/biosynthesis , Transcription, Genetic/physiology , Cell Hypoxia/physiology , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , MCF-7 Cells
8.
J Physiol ; 594(5): 1179-95, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26337139

ABSTRACT

Ventilatory sensitivity to hypoxia increases in response to continued hypoxic exposure as part of acute acclimatisation. Although this process is incompletely understood, insights have been gained through studies of the hypoxia-inducible factor (HIF) hydroxylase system. Genetic studies implicate these pathways widely in the integrated physiology of hypoxia, through effects on developmental or adaptive processes. In keeping with this, mice that are heterozygous for the principal HIF prolyl hydroxylase, PHD2, show enhanced ventilatory sensitivity to hypoxia and carotid body hyperplasia. Here we have sought to understand this process better through comparative analysis of inducible and constitutive inactivation of PHD2 and its principal targets HIF-1α and HIF-2α. We demonstrate that general inducible inactivation of PHD2 in tamoxifen-treated Phd2(f/f);Rosa26(+/CreERT2) mice, like constitutive, heterozygous PHD2 deficiency, enhances hypoxic ventilatory responses (HVRs: 7.2 ± 0.6 vs. 4.4 ± 0.4 ml min(-1) g(-1) in controls, P < 0.01). The ventilatory phenotypes associated with both inducible and constitutive inactivation of PHD2 were strongly compensated for by concomitant inactivation of HIF-2α, but not HIF-1α. Furthermore, inducible inactivation of HIF-2α strikingly impaired ventilatory acclimatisation to chronic hypoxia (HVRs: 4.1 ± 0.5 vs. 8.6 ± 0.5 ml min(-1) g(-1) in controls, P < 0.0001), as well as carotid body cell proliferation (400 ± 81 vs. 2630 ± 390 bromodeoxyuridine-positive cells mm(-2) in controls, P < 0.0001). The findings demonstrate the importance of the PHD2/HIF-2α enzyme-substrate couple in modulating ventilatory sensitivity to hypoxia.


Subject(s)
Carotid Body/metabolism , Cell Proliferation , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia/metabolism , Pulmonary Ventilation , Transcription Factors/metabolism , Animals , Carotid Body/cytology , Hypoxia/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Mice , Mice, Inbred C57BL , Transcription Factors/genetics
9.
Blood ; 123(3): 366-76, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24196071

ABSTRACT

Neutrophil lifespan and function are regulated by hypoxia via components of the hypoxia inducible factor (HIF)/von Hippel Lindau/hydroxylase pathway, including specific roles for HIF-1α and prolyl hydroxylase-3. HIF-2α has both distinct and overlapping biological roles with HIF-1α and has not previously been studied in the context of neutrophil biology. We investigated the role of HIF-2α in regulating key neutrophil functions. Human and murine peripheral blood neutrophils expressed HIF-2α, with expression up-regulated by acute and chronic inflammatory stimuli and in disease-associated inflammatory neutrophil. HIF2A gain-of-function mutations resulted in a reduction in neutrophil apoptosis both ex vivo, through the study of patient cells, and in vivo in a zebrafish tail injury model. In contrast, HIF-2α-deficient murine inflammatory neutrophils displayed increased sensitivity to nitrosative stress induced apoptosis ex vivo and increased neutrophil apoptosis in vivo, resulting in a reduction in neutrophilic inflammation and reduced tissue injury. Expression of HIF-2α was temporally dissociated from HIF-1α in vivo and predominated in the resolution phase of inflammation. These data support a critical and selective role for HIF-2α in persistence of neutrophilic inflammation and provide a platform to dissect the therapeutic utility of targeting HIF-2α in chronic inflammatory diseases.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation , Inflammation , Neutrophils/metabolism , Animals , Apoptosis , Cell Hypoxia , Green Fluorescent Proteins/metabolism , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Muramidase , Neutrophils/cytology , Phagocytosis , Phenotype , RNA/metabolism , Respiratory Burst , Zebrafish
10.
Adv Exp Med Biol ; 903: 259-71, 2016.
Article in English | MEDLINE | ID: mdl-27343102

ABSTRACT

Hypoxia stimulates a variety of adaptive responses, many mediated via the hypoxia inducible factors (HIF) family of transcriptional complexes. The balance of HIF-1, -2 and -3 controls a variety of genes, directly up-regulating transcription of genes involved in erythropoiesis, angiogenesis, vasomotor tone, metabolic pathways and processes related to cell multiplication and survival, and indirectly reducing the transcription of genes with other effects. HIF transcription factors are heterodimers consisting of an oxygen-regulated alpha chain bound to the constitutive aryl hydrocarbon receptor nuclear translocator. Under circumstances where oxygen is abundant the activity of the alpha chain is blocked by the actions of members of a family of oxygen-, iron- and oxoglutarate-dependent dioxygenase enzymes. Hydroxylation of two critical prolyl residues by the HIF prolyl hydroxylases (PHD1-3) leads to recognition by the von Hippel-Lindau E3 ubiquitin ligase complex, polyubiquitylation of the alpha chain and its consequent destruction by the proteasome. Hydroxylation of an asparaginyl residue by Factor Inhibiting HIF prevents any surviving HIF alpha chains from recruiting p300-CBP proteins, important for maximal transcriptional activation. Under conditions of acute hypoxia enzyme activity is suppressed, the HIF alpha chains are allowed to exist in their active form and target gene transcription is enhanced. In sustained hypoxia, adaptive responses mediated by the HIF pathway reduce oxygen demand and increase oxygen supply and thus ultimately down-regulate the pathway. However, a number of other processes also modulate HIF signalling and the balance between HIF-1 and HIF-2 actions. These include the generation of antisense HIF-1 and micro RNAs, up-regulation of HIF-3 alpha, antagonism of the HIF-p300 interaction by CITED2, increased PHD2 and PHD3 levels and effects on the pool of ankyrins within the cell which compete with HIF for the action of FIH. Additionally, effects on intermediary metabolism, reactive oxygen species, iron availability, nitric oxide levels and redox status within the cell may modulate HIF activity. Together, these effects lead to a reduction in the magnitude of the HIF response even if oxygenation is not restored and are predicted to alter the responsiveness of the system when oxygenation is restored.


Subject(s)
Hypoxia/pathology , Altitude , Animals , Erythropoietin/genetics , Erythropoietin/metabolism , Feedback, Physiological , Humans , Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Up-Regulation/genetics
11.
Cancer Res ; 84(11): 1799-1816, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38502859

ABSTRACT

Defining the initial events in oncogenesis and the cellular responses they entrain, even in advance of morphologic abnormality, is a fundamental challenge in understanding cancer initiation. As a paradigm to address this, we longitudinally studied the changes induced by loss of the tumor suppressor gene von Hippel Lindau (VHL), which ultimately drives clear cell renal cell carcinoma. Vhl inactivation was directly coupled to expression of a tdTomato reporter within a single allele, allowing accurate visualization of affected cells in their native context and retrieval from the kidney for single-cell RNA sequencing. This strategy uncovered cell type-specific responses to Vhl inactivation, defined a proximal tubular cell class with oncogenic potential, and revealed longer term adaptive changes in the renal epithelium and the interstitium. Oncogenic cell tagging also revealed markedly heterogeneous cellular effects including time-limited proliferation and elimination of specific cell types. Overall, this study reports an experimental strategy for understanding oncogenic processes in which cells bearing genetic alterations can be generated in their native context, marked, and analyzed over time. The observed effects of loss of Vhl in kidney cells provide insights into VHL tumor suppressor action and development of renal cell carcinoma. SIGNIFICANCE: Single-cell analysis of heterogeneous and dynamic responses to Vhl inactivation in the kidney suggests that early events shape the cell type specificity of oncogenesis, providing a focus for mechanistic understanding and therapeutic targeting.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Single-Cell Analysis , Von Hippel-Lindau Tumor Suppressor Protein , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Single-Cell Analysis/methods , Animals , Mice , Transcriptome , Humans , Kidney/pathology , Kidney/metabolism , Carcinogenesis/genetics , Cell Proliferation/genetics
12.
Diagnostics (Basel) ; 14(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38535011

ABSTRACT

BACKGROUND: Lung ultrasound (LUS) is increasingly used as an extension of physical examination, informing clinical diagnosis, and decision making. There is particular interest in the assessment of patients with pulmonary congestion and extravascular lung water, although gaps remain in the evidence base underpinning this practice as a result of the limited evaluation of its inter-rater reliability and comparison with more established radiologic tests. METHODS: 30 patients undergoing haemodialysis were prospectively recruited to an observational cohort study (NCT01949402). Patients underwent standardised LUS assessment before, during and after haemodialysis; their total LUS B-line score was generated, alongside a binary label of whether appearances were consistent with an interstitial syndrome. LUS video clips were recorded and independently scored by two blinded expert clinician sonographers. Low-dose non-contrast thoracic CT, pre- and post dialysis, was used as a "gold standard" radiologic comparison. RESULTS: LUS detected a progressive reduction in B-line scores in almost all patients undergoing haemodialysis, correlating with the volume of fluid removed once individuals with no or minimal B-lines upon pre-dialysis examination were discounted. When comparing CT scans pre- and post dialysis, radiologic evidence of the change in fluid status was only identified in a single patient. CONCLUSIONS: This is the first study to demonstrate that LUS detects changes in extravascular lung water caused by changing fluid status during haemodialysis using a blinded outcome assessment and that LUS appears to be more sensitive than CT for this purpose. Further research is needed to better understand the role of LUS in this and similar patient populations, with the aim of improving clinical care and outcomes.

13.
Nat Commun ; 15(1): 3173, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609390

ABSTRACT

Semaphorin-3A (SEMA3A) functions as a chemorepulsive signal during development and can affect T cells by altering their filamentous actin (F-actin) cytoskeleton. The exact extent of these effects on tumour-specific T cells are not completely understood. Here we demonstrate that Neuropilin-1 (NRP1) and Plexin-A1 and Plexin-A4 are upregulated on stimulated CD8+ T cells, allowing tumour-derived SEMA3A to inhibit T cell migration and assembly of the immunological synapse. Deletion of NRP1 in both CD4+ and CD8+ T cells enhance CD8+ T-cell infiltration into tumours and restricted tumour growth in animal models. Conversely, over-expression of SEMA3A inhibit CD8+ T-cell infiltration. We further show that SEMA3A affects CD8+ T cell F-actin, leading to inhibition of immune synapse formation and motility. Examining a clear cell renal cell carcinoma patient cohort, we find that SEMA3A expression is associated with reduced survival, and that T-cells appear trapped in SEMA3A rich regions. Our study establishes SEMA3A as an inhibitor of effector CD8+ T cell tumour infiltration, suggesting that blocking NRP1 could improve T cell function in tumours.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Actins , CD8-Positive T-Lymphocytes , Cytoskeleton , Semaphorin-3A/genetics
14.
J Physiol ; 591(14): 3565-77, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23690557

ABSTRACT

Oxygen-dependent prolyl hydroxylation of hypoxia-inducible factor (HIF) by a set of closely related prolyl hydroxylase domain enzymes (PHD1, 2 and 3) regulates a range of transcriptional responses to hypoxia. This raises important questions about the role of these oxygen-sensing enzymes in integrative physiology. We investigated the effect of both genetic deficiency and pharmacological inhibition on the change in ventilation in response to acute hypoxic stimulation in mice. Mice exposed to chronic hypoxia for 7 days manifest an exaggerated hypoxic ventilatory response (HVR) (10.8 ± 0.3 versus 4.1 ± 0.7 ml min(-1) g(-1) in controls; P < 0.01). HVR was similarly exaggerated in PHD2(+/-) animals compared to littermate controls (8.4 ± 0.7 versus 5.0 ± 0.8 ml min(-1) g(-1); P < 0.01). Carotid body volume increased (0.0025 ± 0.00017 in PHD2(+/-) animals versus 0.0015 ± 0.00019 mm(3) in controls; P < 0.01). In contrast, HVR in PHD1(-/-) and PHD3(-/-) mice was similar to littermate controls. Acute exposure to a small molecule PHD inhibitor (PHI) (2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetic acid) did not mimic the ventilatory response to hypoxia. Further, 7 day administration of the PHI induced only modest increases in HVR and carotid body cell proliferation, despite marked stimulation of erythropoiesis. This was in contrast with chronic hypoxia, which elicited both exaggerated HVR and cellular proliferation. The findings demonstrate that PHD enzymes modulate ventilatory sensitivity to hypoxia and identify PHD2 as the most important enzyme in this response. They also reveal differences between genetic inactivation of PHDs, responses to hypoxia and responses to a pharmacological inhibitor, demonstrating the need for caution in predicting the effects of therapeutic modulation of the HIF hydroxylase system on different physiological responses.


Subject(s)
Carotid Body/pathology , Hypoxia-Inducible Factor-Proline Dioxygenases/physiology , Hypoxia/physiopathology , Pulmonary Ventilation/physiology , Animals , Carotid Body/physiopathology , Hyperplasia/physiopathology , Hypoxia-Inducible Factor 1/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
15.
Blood ; 117(23): e207-17, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-21447827

ABSTRACT

Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromosome Mapping , Epigenesis, Genetic/physiology , Genome, Human/physiology , Genome-Wide Association Study , Response Elements/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation/methods , Female , Humans , Oxygen/metabolism
16.
J Physiol ; 590(16): 4079-91, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22615432

ABSTRACT

This study investigated the function of each of the hypoxia inducible factor (HIF) prolyl-4-hydroxylase enzymes (PHD1­3) in the first 24 h following transient focal cerebral ischaemia by using mice with each isoform genetically suppressed. Male, 8- to 12-week old PHD1−/−, PHD2+/− and PHD3−/− mice and their wild-type (WT) littermate were subjected to 45 min of middle cerebral artery occlusion (MCAO). During the experiments, regional cerebral blood flow (rCBF) was recorded by laser Doppler flowmetry. Behaviour was assessed at both 2 h and 24 h after reperfusion with a common neuroscore. Infarct volumes, blood­brain barrier (BBB) disruption, cerebral vascular density, apoptosis, reactive oxygen species (ROS), HIF1α, and glycogen levels were then determined using histological and immunohistochemical techniques. When compared to their WT littermates, PHD2+/− mice had significantly increased cerebral microvascular density and more effective restoration of CBF upon reperfusion. PHD2+/− mice showed significantly better functional outcomes and higher activity rates at both 2 h and 24 h after MCAO, associated with significant fewer apoptotic cells in the penumbra and less BBB disruption; PHD3−/− mice had impaired rCBF upon early reperfusion but comparable functional outcomes; PHD1−/− mice did not show any significant changes following the MCAO. Production of ROS, HIF1α staining and glycogen content in the brain were not different in any comparison. Life-long genetic inhibition of PHD enzymes produces different effects on outcome in the first 24 h after transient cerebral ischaemia. These need to be considered in optimizing therapeutic effects of PHD inhibitors, particularly when isoform specific inhibitors become available.


Subject(s)
Brain Ischemia/enzymology , Procollagen-Proline Dioxygenase/metabolism , Animals , Body Temperature Regulation , Body Weight , Brain Ischemia/metabolism , Cerebral Arteries , Cerebral Cortex/blood supply , Gene Expression Regulation/physiology , Genotype , Hypoxia-Inducible Factor-Proline Dioxygenases , Male , Mice , Mice, Knockout , Procollagen-Proline Dioxygenase/genetics , Protein Isoforms
17.
J Biol Chem ; 286(6): 4090-7, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-20966077

ABSTRACT

Hepcidin is a liver-derived hormone with a key role in iron homeostasis. In addition to iron, it is regulated by inflammation and hypoxia, although mechanisms of hypoxic regulation remain unclear. In hepatocytes, hepcidin is induced by bone morphogenetic proteins (BMPs) through a receptor complex requiring hemojuvelin (HJV) as a co-receptor. Type II transmembrane serine proteinase (TMPRSS6) antagonizes hepcidin induction by BMPs by cleaving HJV from the cell membrane. Inactivating mutations in TMPRSS6 lead to elevated hepcidin levels and consequent iron deficiency anemia. Here we demonstrate that TMPRSS6 is up-regulated in hepatic cell lines by hypoxia and by other activators of hypoxia-inducible factor (HIF). We show that TMPRSS6 expression is regulated by both HIF-1α and HIF-2α. This HIF-dependent up-regulation of TMPRSS6 increases membrane HJV shedding and decreases hepcidin promoter responsiveness to BMP signaling in hepatocytes. Our results reveal a potential role for TMPRSS6 in hepcidin regulation by hypoxia and provide a new molecular link between oxygen sensing and iron homeostasis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Membrane/enzymology , Homeostasis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Iron/metabolism , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Signal Transduction , Anemia, Iron-Deficiency/enzymology , Anemia, Iron-Deficiency/genetics , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cell Hypoxia/physiology , Cell Line , Hemochromatosis Protein , Hepcidins , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Membrane Proteins/genetics , Mutation , Oxygen/metabolism , Serine Endopeptidases/genetics , Up-Regulation/genetics
18.
J Biol Chem ; 286(15): 13041-51, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21335549

ABSTRACT

Hypoxia inducible factor (HIF) is regulated by dual pathways involving oxygen-dependent prolyl and asparaginyl hydroxylation of its α-subunits. Prolyl hydroxylation at two sites within a central degradation domain promotes association of HIF-α with the von Hippel-Lindau ubiquitin E3 ligase and destruction by the ubiquitin-proteasome pathways. Asparaginyl hydroxylation blocks the recruitment of p300/CBP co-activators to a C-terminal activation domain in HIF-α. These hydroxylations are catalyzed by members of the Fe(II) and 2-oxoglutarate (2-OG) oxygenase family. Activity of the enzymes is suppressed by hypoxia, increasing both the abundance and activity of the HIF transcriptional complex. We have used hydroxy residue-specific antibodies to compare and contrast the regulation of each site of prolyl hydroxylation (Pro(402), Pro(564)) with that of asparaginyl hydroxylation (Asn(803)) in human HIF-1α. Our findings reveal striking differences in the sensitivity of these hydroxylations to hypoxia and to different inhibitor types of 2-OG oxygenases. Hydroxylation at the three sites in endogenous human HIF-1α proteins was suppressed by hypoxia in the order Pro(402) > Pro(564) > Asn(803). In contrast to some predictions from in vitro studies, prolyl hydroxylation was substantially more sensitive than asparaginyl hydroxylation to inhibition by iron chelators and transition metal ions; studies of a range of different small molecule 2-OG analogues demonstrated the feasibility of selectively inhibiting either prolyl or asparaginyl hydroxylation within cells.


Subject(s)
Enzyme Inhibitors/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Oxygenases/antagonists & inhibitors , Oxygenases/metabolism , Animals , Cell Hypoxia/physiology , Drosophila melanogaster , Hep G2 Cells , Humans , Hydroxylation/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , K562 Cells , Male , Protein Structure, Tertiary/physiology , Rats , Rats, Sprague-Dawley , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , p300-CBP Transcription Factors
19.
Kidney Int ; 81(7): 674-83, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22189841

ABSTRACT

Renin-angiotensin-aldosterone system inhibitors prevent the progression of kidney disease in patients with diabetic nephropathy, and we studied how that benefit varies by the type of diabetes and baseline urinary albumin. We pooled data from 49 randomized controlled trials in a meta-analysis using the ratio of endpoint urinary albumin levels in those treated compared to those untreated with renin-angiotensin-aldosterone system inhibitors in both fixed- and random-effects models. The urinary albumin excretion for treated microalbuminuric patients with Type 1 diabetes was on average 60% lower at the end of the trial compared with patients not treated with renin-angiotensin-aldosterone system inhibitors using the fixed-effects model and 67% lower using the random-effects model. There was no significant effect of treatment in patients with normal albumin excretion. For normoalbuminuric patients with Type 2 diabetes, urinary albumin excretion was on average 12% lower after treatment using the fixed-effects model compared to 21% lower using the random-effects model. For microalbuminuric patients, urinary albumin excretion was on average 23% lower using the fixed-effects model and 27% lower using the random-effects model. Thus, renin-angiotensin-aldosterone system inhibition reduced urinary albumin excretion for Type 1 diabetic patients with micro-, but not those with normoalbuminuria. Treatment reduced urinary albumin excretion for Type 2 diabetic patients with and without microalbuminuria.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/drug therapy , Renin-Angiotensin System/drug effects , Albuminuria/drug therapy , Albuminuria/physiopathology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/physiopathology , Disease Progression , Female , Humans , Male , Models, Biological , Randomized Controlled Trials as Topic , Regression Analysis
20.
Hum Mol Genet ; 19(19): 3844-51, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20660115

ABSTRACT

Mutations in the gene encoding the Krebs cycle enzyme fumarate hydratase (FH) predispose to hereditary leiomyomatosis and renal cell cancer in affected individuals. FH-associated neoplasia is characterized by defective mitochondrial function and by upregulation of transcriptional pathways mediated by hypoxia-inducible factor (HIF), although whether and by what means these processes are linked has been disputed. We analysed the HIF pathway in Fh1-/- mouse embryonic fibroblasts (MEFs), in FH-defective neoplastic tissues and in Fh1-/- MEFs re-expressing either wild-type or an extra-mitochondrial restricted form of FH. These experiments demonstrated that upregulation of HIF-1alpha occurs as a direct consequence of FH inactivation. Fh1-/- cells accumulated intracellular fumarate and manifested severe impairment of HIF prolyl but not asparaginyl hydroxylation which was corrected by provision of exogenous 2-oxoglutarate (2-OG). Re-expression of the extra-mitochondrial form of FH in Fh1-/- cells was sufficient to reduce intracellular fumarate and to correct dysregulation of the HIF pathway completely, even in cells that remained profoundly defective in mitochondrial energy metabolism. The findings indicate that upregulation of HIF-1alpha arises from competitive inhibition of the 2-OG-dependent HIF hydroxylases by fumarate and not from disruption of mitochondrial energy metabolism.


Subject(s)
Fumarate Hydratase/deficiency , Mitochondria/metabolism , Signal Transduction , Animals , Cell Hypoxia , Embryo, Mammalian/cytology , Fibroblasts/enzymology , Fibroblasts/pathology , Fumarate Hydratase/metabolism , Genetic Complementation Test , Humans , Hydroxylation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Models, Biological , Oxygen Consumption , Proline/metabolism , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL