Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052475

ABSTRACT

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Male , Rats , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Epilepsy/etiology , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/pathology , Percussion , Phenotype , Rats, Sprague-Dawley , Reproducibility of Results , Seizures
2.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835526

ABSTRACT

Analysis platforms to predict drug-induced seizure liability at an early phase of drug development would improve safety and reduce attrition and the high cost of drug development. We hypothesized that a drug-induced in vitro transcriptomics signature predicts its ictogenicity. We exposed rat cortical neuronal cultures to non-toxic concentrations of 34 compounds for 24 h; 11 were known to be ictogenic (tool compounds), 13 were associated with a high number of seizure-related adverse event reports in the clinical FDA Adverse Event Reporting System (FAERS) database and systematic literature search (FAERS-positive compounds), and 10 were known to be non-ictogenic (FAERS-negative compounds). The drug-induced gene expression profile was assessed from RNA-sequencing data. Transcriptomics profiles induced by the tool, FAERS-positive and FAERS-negative compounds, were compared using bioinformatics and machine learning. Of the 13 FAERS-positive compounds, 11 induced significant differential gene expression; 10 of the 11 showed an overall high similarity to the profile of at least one tool compound, correctly predicting the ictogenicity. Alikeness-% based on the number of the same differentially expressed genes correctly categorized 85%, the Gene Set Enrichment Analysis score correctly categorized 73%, and the machine-learning approach correctly categorized 91% of the FAERS-positive compounds with reported seizure liability currently in clinical use. Our data suggest that the drug-induced gene expression profile could be used as a predictive biomarker for seizure liability.


Subject(s)
Adverse Drug Reaction Reporting Systems , Drug-Related Side Effects and Adverse Reactions , United States , Animals , Rats , Transcriptome , United States Food and Drug Administration , Seizures
3.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762352

ABSTRACT

We tested a hypothesis that in silico-discovered compounds targeting traumatic brain injury (TBI)-induced transcriptomics dysregulations will mitigate TBI-induced molecular pathology and augment the effect of co-administered antiseizure treatment, thereby alleviating functional impairment. In silico bioinformatic analysis revealed five compounds substantially affecting TBI-induced transcriptomics regulation, including calpain inhibitor, chlorpromazine, geldanamycin, tranylcypromine, and trichostatin A (TSA). In vitro exposure of neuronal-BV2-microglial co-cultures to compounds revealed that TSA had the best overall neuroprotective, antioxidative, and anti-inflammatory effects. In vivo assessment in a rat TBI model revealed that TSA as a monotherapy (1 mg/kg/d) or in combination with the antiseizure drug levetiracetam (LEV 150 mg/kg/d) mildly mitigated the increase in plasma levels of the neurofilament subunit pNF-H and cortical lesion area. The percentage of rats with seizures during 0-72 h post-injury was reduced in the following order: TBI-vehicle 80%, TBI-TSA (1 mg/kg) 86%, TBI-LEV (54 mg/kg) 50%, TBI-LEV (150 mg/kg) 40% (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 30% (p < 0.05). Cumulative seizure duration was reduced in the following order: TBI-vehicle 727 ± 688 s, TBI-TSA 898 ± 937 s, TBI-LEV (54 mg/kg) 358 ± 715 s, TBI-LEV (150 mg/kg) 42 ± 64 (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 109 ± 282 s (p < 0.05). This first preclinical intervention study on post-TBI acute seizures shows that a combination therapy with the tissue recovery enhancer TSA and LEV was safe but exhibited no clear benefit over LEV monotherapy on antiseizure efficacy. A longer follow-up is needed to confirm the possible beneficial effects of LEV monotherapy and combination therapy with TSA on chronic post-TBI structural and functional outcomes, including epileptogenesis.

4.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769143

ABSTRACT

Traumatic brain injury (TBI) causes 10-20% of structural epilepsies and 5% of all epilepsies. The lack of prognostic biomarkers for post-traumatic epilepsy (PTE) is a major obstacle to the development of anti-epileptogenic treatments. Previous studies revealed TBI-induced alterations in blood microRNA (miRNA) levels, and patients with epilepsy exhibit dysregulation of blood miRNAs. We hypothesized that acutely altered plasma miRNAs could serve as prognostic biomarkers for brain damage severity and the development of PTE. To investigate this, epileptogenesis was induced in adult male Sprague Dawley rats by lateral fluid-percussion-induced TBI. Epilepsy was defined as the occurrence of at least one unprovoked seizure during continuous 1-month video-electroencephalography monitoring in the sixth post-TBI month. Cortical pathology was analyzed by magnetic resonance imaging on day 2 (D2), D7, and D21, and by histology 6 months post-TBI. Small RNA sequencing was performed from tail-vein plasma samples on D2 and D9 after TBI (n = 16, 7 with and 9 without epilepsy) or sham operation (n = 4). The most promising miRNA biomarker candidates were validated by droplet digital polymerase chain reaction in a validation cohort of 115 rats (8 naïve, 17 sham, and 90 TBI rats [21 with epilepsy]). These included 7 brain-enriched plasma miRNAs (miR-434-3p, miR-9a-3p, miR-136-3p, miR-323-3p, miR-124-3p, miR-212-3p, and miR-132-3p) that were upregulated on D2 post-TBI (p < 0.001 for all compared with naïve rats). The acute post-TBI plasma miRNA profile did not predict the subsequent development of PTE or PTE severity. Plasma miRNA levels, however, predicted the cortical pathology severity on D2 (Spearman ρ = 0.345-0.582, p < 0.001), D9 (ρ = 0.287-0.522, p < 0.001-0.01), D21 (ρ = 0.269-0.581, p < 0.001-0.05) and at 6 months post-TBI (ρ = 0.230-0.433, p < 0.001-0.05). We found that the levels of 6 of 7 miRNAs also reflected mild brain injury caused by the craniotomy during sham operation (ROC AUC 0.76-0.96, p < 0.001-0.05). In conclusion, our findings revealed that increased levels of neuronally enriched miRNAs in the blood circulation after TBI reflect the extent of cortical injury in the brain but do not predict PTE development.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Circulating MicroRNA , Epilepsy , MicroRNAs , Rats , Male , Animals , Rats, Sprague-Dawley , Brain Injuries, Traumatic/pathology , Brain Injuries/complications , MicroRNAs/genetics , Epilepsy/genetics , Biomarkers , Disease Models, Animal
5.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499527

ABSTRACT

Plasma neurofilament light chain (NF-L) levels were assessed as a diagnostic biomarker for traumatic brain injury (TBI) and as a prognostic biomarker for somatomotor recovery, cognitive decline, and epileptogenesis. Rats with severe TBI induced by lateral fluid-percussion injury (n = 26, 13 with and 13 without epilepsy) or sham-operation (n = 8) were studied. During a 6-month follow-up, rats underwent magnetic resonance imaging (MRI) (day (D) 2, D7, and D21), composite neuroscore (D2, D6, and D14), Morris-water maze (D35−D39), and a 1-month-long video-electroencephalogram to detect unprovoked seizures during the 6th month. Plasma NF-L levels were assessed using a single-molecule assay at baseline (i.e., naïve animals) and on D2, D9, and D178 after TBI or a sham operation. Plasma NF-L levels were 483-fold higher on D2 (5072.0 ± 2007.0 pg/mL), 89-fold higher on D9 (930.3 ± 306.4 pg/mL), and 3-fold higher on D176 32.2 ± 8.9 pg/mL after TBI compared with baseline (10.5 ± 2.6 pg/mL; all p < 0.001). Plasma NF-L levels distinguished TBI rats from naïve animals at all time-points examined (area under the curve [AUC] 1.0, p < 0.001), and from sham-operated controls on D2 (AUC 1.0, p < 0.001). Plasma NF-L increases on D2 were associated with somatomotor impairment severity (ρ = −0.480, p < 0.05) and the cortical lesion extent in MRI (ρ = 0.401, p < 0.05). Plasma NF-L increases on D2 or D9 were associated with the cortical lesion extent in histologic sections at 6 months post-injury (ρ = 0.437 for D2; ρ = 0.393 for D9, p < 0.05). Plasma NF-L levels, however, did not predict somatomotor recovery, cognitive decline, or epileptogenesis (p > 0.05). Plasma NF-L levels represent a promising noninvasive translational diagnostic biomarker for acute TBI and a prognostic biomarker for post-injury somatomotor impairment and long-term structural brain damage.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Cognitive Dysfunction , Animals , Rats , Rats, Sprague-Dawley , Prognosis , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Seizures/complications , Brain Injuries/pathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Disease Models, Animal
6.
Epilepsy Behav ; 121(Pt B): 107080, 2021 08.
Article in English | MEDLINE | ID: mdl-32317161

ABSTRACT

A biomarker is a characteristic that can be objectively measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Biomarker modalities include molecular, histologic, radiographic, or physiologic characteristics. To improve the understanding and use of biomarker terminology in biomedical research, clinical practice, and medical product development, the Food and Drug Administration (FDA)-National Institutes of Health (NIH) Joint Leadership Council developed the BEST Resource (Biomarkers, EndpointS, and other Tools). The seven BEST biomarker categories include the following: (a) susceptibility/risk biomarkers, (b) diagnostic biomarkers, (c) monitoring biomarkers, (d) prognostic biomarkers, (e) predictive biomarkers, (f) pharmacodynamic/response biomarkers, and (g) safety biomarkers. We hypothesize some potential overlap between the reported biomarkers of traumatic brain injury (TBI), epilepsy, and posttraumatic epilepsy (PTE). Here, we tested this hypothesis by reviewing studies focusing on biomarker discovery for posttraumatic epileptogenesis and epilepsy. The biomarker modalities reviewed here include plasma/serum and cerebrospinal fluid molecular biomarkers, imaging biomarkers, and electrophysiologic biomarkers. Most of the reported biomarkers have an area under the receiver operating characteristic curve greater than 0.800, suggesting both high sensitivity and high specificity. Our results revealed little overlap in the biomarker candidates between TBI, epilepsy, and PTE. In addition to using single parameters as biomarkers, machine learning approaches have highlighted the potential for utilizing patterns of markers as biomarkers. Although published data suggest the possibility of identifying biomarkers for PTE, we are still in the early phase of the development curve. Many of the seven biomarker categories lack PTE-related biomarkers. Thus, further exploration using proper, statistically powered, and standardized study designs with validation cohorts, and by developing and applying novel analytical methods, is needed for PTE biomarker discovery.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Biomarkers , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnosis , Epilepsy/diagnosis , Epilepsy/etiology , Epilepsy, Post-Traumatic/diagnosis , Epilepsy, Post-Traumatic/etiology , Humans , ROC Curve
7.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557217

ABSTRACT

Noninvasive, affordable circulating biomarkers for difficult-to-diagnose mild traumatic brain injury (mTBI) are an unmet medical need. Although blood microRNA (miRNA) levels are reportedly altered after traumatic brain injury (TBI), their diagnostic potential for mTBI remains inconclusive. We hypothesized that acutely altered plasma miRNAs could serve as diagnostic biomarkers both in the lateral fluid percussion injury (FPI) model and clinical mTBI. We performed plasma small RNA-sequencing from adult male Sprague-Dawley rats (n = 31) at 2 days post-TBI, followed by polymerase chain reaction (PCR)-based validation of selected candidates. miR-9a-3p, miR-136-3p, and miR-434-3p were identified as the most promising candidates at 2 days after lateral FPI. Digital droplet PCR (ddPCR) revealed 4.2-, 2.8-, and 4.6-fold elevations in miR-9a-3p, miR-136-3p, and miR-434-3p levels (p < 0.01 for all), respectively, distinguishing rats with mTBI from naïve rats with 100% sensitivity and specificity. DdPCR further identified a subpopulation of mTBI patients with plasma miR-9-3p (n = 7/15) and miR-136-3p (n = 5/15) levels higher than one standard deviation above the control mean at <2 days postinjury. In sTBI patients, plasma miR-9-3p levels were 6.5- and 9.2-fold in comparison to the mTBI and control groups, respectively. Thus, plasma miR-9-3p and miR-136-3p were identified as promising biomarker candidates for mTBI requiring further evaluation in a larger patient population.


Subject(s)
Biomarkers , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/genetics , MicroRNAs/blood , Aged , Animals , Brain Injuries, Traumatic/blood , Case-Control Studies , Computational Biology/methods , Disease Models, Animal , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Machine Learning , Male , Middle Aged , Prognosis , ROC Curve , Rats , Reproducibility of Results , Severity of Illness Index , Time Factors , Transcriptome
8.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638900

ABSTRACT

We assessed the effect of antioxidant therapy using the Food and Drug Administration-approved respiratory drug N-acetylcysteine (NAC) or sulforaphane (SFN) as monotherapies or duotherapy in vitro in neuron-BV2 microglial co-cultures and validated the results in a lateral fluid-percussion model of TBI in rats. As in vitro measures, we assessed neuronal viability by microtubule-associated-protein 2 immunostaining, neuroinflammation by monitoring tumor necrosis factor (TNF) levels, and neurotoxicity by measuring nitrite levels. In vitro, duotherapy with NAC and SFN reduced nitrite levels to 40% (p < 0.001) and neuroinflammation to -29% (p < 0.001) compared with untreated culture. The treatment also improved neuronal viability up to 72% of that in a positive control (p < 0.001). The effect of NAC was negligible, however, compared with SFN. In vivo, antioxidant duotherapy slightly improved performance in the beam walking test. Interestingly, duotherapy treatment decreased the plasma interleukin-6 and TNF levels in sham-operated controls (p < 0.05). After TBI, no treatment effect on HMGB1 or plasma cytokine levels was detected. Also, no treatment effects on the composite neuroscore or cortical lesion area were detected. The robust favorable effect of duotherapy on neuroprotection, neuroinflammation, and oxidative stress in neuron-BV2 microglial co-cultures translated to modest favorable in vivo effects in a severe TBI model.


Subject(s)
Acetylcysteine/pharmacology , Brain Injuries, Traumatic/drug therapy , Isothiocyanates/pharmacology , Microglia/drug effects , Neurons/drug effects , Oxidative Stress/drug effects , Sulfoxides/pharmacology , Animals , Antioxidants/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Cell Line , Cell Survival/drug effects , Cells, Cultured , Disease Models, Animal , Gene Expression/drug effects , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Male , Mice, Inbred C57BL , Microglia/cytology , Microglia/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neurons/cytology , Neurons/metabolism , Rats, Sprague-Dawley
9.
Epilepsia ; 61(9): 2035-2052, 2020 09.
Article in English | MEDLINE | ID: mdl-32786029

ABSTRACT

OBJECTIVE: To identify postinjury physiologic, behavioral, and cognitive biomarkers for posttraumatic epilepsy to enrich study populations for long-term antiepileptogenesis studies. METHODS: The EPITARGET cohort with behavioral follow-up and 1-month 24/7 video-electroencephalography (vEEG) monitoring included 115 adult male Sprague-Dawley rats with lateral fluid-percussion-induced traumatic brain injury (TBI), 23 sham-operated controls, and 13 naive rats. Animals underwent assessment of somatomotor performance (composite neuroscore), anxiety-like behavior (elevated plus maze, open field), spatial memory (Morris water maze), and depression-like behavior (Porsolt forced swim, sucrose preference). Impact force, postimpact apnea time, postimpact seizure-like behavior, and body weight were monitored. RESULTS: TBI rats were impaired in the composite neuroscore (P < .001) on days (D) 2-14 and in the spatial memory test (P < .001) on D35-39 post-TBI. Differences in the elevated plus-maze (D28 and D126) and in the open field (D29 and D127) between TBI rats and controls were meager. No differences were observed in the Porsolt forced swim and sucrose preference tests as compared with sham-operated controls. Epilepsy developed in 27% of rats by the end of the sixth month. None of the behavioral or cognitive outcome measures discriminated rats with or without epilepsy. The receiver-operating characteristic analysis indicated that a decrease in body weight between D0 and D4 differentiated TBI rats with epilepsy from TBI rats without epilepsy (48% sensitivity, 83% specificity, area under the curve [AUC] 0.679, confidence interval [CI] 95% 0.56-0.80, P < .01). A 16% body weight decrease during D0-D4 could be used as a biomarker to enrich the study population from 27% (observed) to 50%. SIGNIFICANCE: Single behavioral and cognitive outcome measures showed no power as prognostic/diagnostic biomarkers for posttraumatic epilepsy. A reduction in body weight during the first postinjury week showed some prognostic value for posttraumatic epileptogenesis and could serve as a subacute measure for selectively enriching the study population for long-term preclinical biomarker and therapy discovery studies of posttraumatic epileptogenesis.


Subject(s)
Anxiety/physiopathology , Apnea/physiopathology , Brain Injuries, Traumatic/physiopathology , Depression/physiopathology , Epilepsy, Post-Traumatic/epidemiology , Seizures/physiopathology , Spatial Memory/physiology , Weight Loss/physiology , Animals , Anxiety/psychology , Behavior, Animal , Body Weight , Brain/physiopathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/psychology , Depression/psychology , Disease Models, Animal , Electroencephalography , Elevated Plus Maze Test , Epilepsy, Post-Traumatic/etiology , Morris Water Maze Test , Open Field Test , Prognosis , ROC Curve , Random Allocation , Rats , Rats, Sprague-Dawley
10.
Int J Mol Sci ; 21(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244461

ABSTRACT

Traumatic brain injury (TBI) dysregulates microRNAs, which are the master regulators of gene expression. Here we investigated the changes in a brain-enriched miR-124-3p, which is known to associate with major post-injury pathologies, such as neuroinflammation. RT-qPCR of the rat tissue sampled at 7 d and 3 months in the perilesional cortex adjacent to the necrotic lesion core (aPeCx) revealed downregulation of miR-124-3p at 7 d (fold-change (FC) 0.13, p < 0.05 compared with control) and 3 months (FC 0.40, p < 0.05) post-TBI. In situ hybridization confirmed the downregulation of miR-124-3p at 7 d and 3 months post-TBI in the aPeCx (both p < 0.01). RT-qPCR confirmed the upregulation of the miR-124-3p target Stat3 in the aPeCx at 7 d post-TBI (7-fold, p < 0.05). mRNA-Seq revealed 312 downregulated and 311 upregulated miR-124 targets (p < 0.05). To investigate whether experimental findings translated to humans, we performed in situ hybridization of miR-124-3p in temporal lobe autopsy samples of TBI patients. Our data revealed downregulation of miR-124-3p in individual neurons of cortical layer III. These findings indicate a persistent downregulation of miR-124-3p in the perilesional cortex that might contribute to post-injury neurodegeneration and inflammation.


Subject(s)
Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Brain/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Biomarkers , Brain Injuries, Traumatic/pathology , Cerebellar Cortex , Computational Biology , Down-Regulation , Female , Gene Expression Profiling , Humans , Male , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Transcriptome , Up-Regulation
11.
Neurobiol Dis ; 123: 42-58, 2019 03.
Article in English | MEDLINE | ID: mdl-29782966

ABSTRACT

A biomarker is a characteristic that is measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Biomarker modalities include molecular, histologic, radiographic, or physiologic characteristics. In 2015, the FDA-NIH Joint Leadership Council developed the BEST Resource (Biomarkers, EndpointS, and other Tools) to improve the understanding and use of biomarker terminology in biomedical research, clinical practice, and medical product development. The BEST biomarker categories include: (a) susceptibility/risk biomarkers, (b) diagnostic biomarkers, (c) monitoring biomarkers, (d) prognostic biomarkers, (e) predictive biomarkers, (f) pharmacodynamic/response biomarkers, and (g) safety biomarkers. Here we review 30 epilepsy biomarker studies that have identified (a) diagnostic biomarkers for epilepsy, epileptogenesis, epileptogenicity, drug-refractoriness, and status epilepticus - some of the epileptogenesis and epileptogenicity biomarkers can also be considered prognostic biomarkers for the development of epilepsy in subjects with a given brain insult, (b) predictive biomarkers for epilepsy surgery outcome, and (c) a response biomarker for therapy outcome. The biomarker modalities include plasma/serum/exosomal and cerebrospinal fluid molecular biomarkers, brain tissue molecular biomarkers, imaging biomarkers, electrophysiologic biomarkers, and behavioral/cognitive biomarkers. Both single and combinatory biomarkers have been described. Most of the reviewed biomarkers have an area under the curve >0.800 in receiver operating characteristics analysis, suggesting high sensitivity and specificity. As discussed in this review, we are in the early phase of the learning curve in epilepsy biomarker discovery. Many of the seven biomarker categories lack epilepsy-related biomarkers. There is a need for epilepsy biomarker discovery using proper, statistically powered study designs with validation cohorts, and the development and use of novel analytical methods. A strategic roadmap to discuss the research priorities in epilepsy biomarker discovery, regulatory issues, and optimization of the use of resources, similar to those devised in the cancer and Alzheimer's disease research areas, is also needed.


Subject(s)
Biomarkers , Epilepsy/diagnosis , Animals , Brain/pathology , Epilepsy/etiology , Epilepsy/pathology , Humans , Sensitivity and Specificity
12.
Cell Mol Life Sci ; 75(24): 4557-4581, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30155647

ABSTRACT

Traumatic brain injury (TBI) initiates molecular and cellular pathologies that underlie post-injury morbidities, including hippocampus-related memory decline and epileptogenesis. Non-coding small RNAs are master regulators of gene expression with the potential to affect multiple molecular pathways. To evaluate whether hippocampal gene expression networks are chronically regulated by microRNAs after TBI, we sampled the dentate gyrus of rats with severe TBI induced by lateral fluid-percussion injury 3 months earlier. Ingenuity pathway analysis revealed 30 upregulated miR-124-3p targets, suggesting that miR-124-3p is downregulated post-TBI (z-score = - 5.146, p < 0.05). Droplet digital polymerase chain reaction (ddPCR) and in situ hybridization confirmed the chronic downregulation of miR-124-3p (p < 0.05). Quantitative PCR analysis of two targets, Plp2 and Stat3, indicated that their upregulation correlated with the miR-124-3p downregulation (r = - 0.647, p < 0.05; r = - 0.629, p < 0.05, respectively). Immunohistochemical staining of STAT3 confirmed the increased protein expression. STRING analysis showed that 9 of the 30 miR-124-3p targets belonged to a STAT3 network. Reactome analysis and data mining connected the targets especially to inflammation and signal transduction. L1000CDS2 software revealed drugs (e.g., importazole, trichostatin A, and IKK-16) that could reverse the observed molecular changes. The translational value of our data was emphasized by in situ hybridization showing chronic post-traumatic downregulation of miR-124-3p in the dentate gyrus of TBI patients. Analysis of another brain injury model, status epilepticus, highlighted the fact that chronic downregulation of miR-124 is a common phenomenon after brain injury. Together, our findings indicate that miR-124-3p is a chronic modulator of molecular networks relevant to post-injury hippocampal pathologies in experimental models and in humans.


Subject(s)
Brain Injuries, Traumatic/genetics , Gene Expression Regulation , MicroRNAs/genetics , Aged , Animals , Brain/metabolism , Brain/pathology , Brain Injuries, Traumatic/pathology , Down-Regulation , Female , Gene Expression , Gene Expression Profiling , Gene Regulatory Networks , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Middle Aged , Rats, Sprague-Dawley
13.
Epilepsia ; 59(1): 37-66, 2018 01.
Article in English | MEDLINE | ID: mdl-29247482

ABSTRACT

The most common forms of acquired epilepsies arise following acute brain insults such as traumatic brain injury, stroke, or central nervous system infections. Treatment is effective for only 60%-70% of patients and remains symptomatic despite decades of effort to develop epilepsy prevention therapies. Recent preclinical efforts are focused on likely primary drivers of epileptogenesis, namely inflammation, neuron loss, plasticity, and circuit reorganization. This review suggests a path to identify neuronal and molecular targets for clinical testing of specific hypotheses about epileptogenesis and its prevention or modification. Acquired human epilepsies with different etiologies share some features with animal models. We identify these commonalities and discuss their relevance to the development of successful epilepsy prevention or disease modification strategies. Risk factors for developing epilepsy that appear common to multiple acute injury etiologies include intracranial bleeding, disruption of the blood-brain barrier, more severe injury, and early seizures within 1 week of injury. In diverse human epilepsies and animal models, seizures appear to propagate within a limbic or thalamocortical/corticocortical network. Common histopathologic features of epilepsy of diverse and mostly focal origin are microglial activation and astrogliosis, heterotopic neurons in the white matter, loss of neurons, and the presence of inflammatory cellular infiltrates. Astrocytes exhibit smaller K+ conductances and lose gap junction coupling in many animal models as well as in sclerotic hippocampi from temporal lobe epilepsy patients. There is increasing evidence that epilepsy can be prevented or aborted in preclinical animal models of acquired epilepsy by interfering with processes that appear common to multiple acute injury etiologies, for example, in post-status epilepticus models of focal epilepsy by transient treatment with a trkB/PLCγ1 inhibitor, isoflurane, or HMGB1 antibodies and by topical administration of adenosine, in the cortical fluid percussion injury model by focal cooling, and in the albumin posttraumatic epilepsy model by losartan. Preclinical studies further highlight the roles of mTOR1 pathways, JAK-STAT3, IL-1R/TLR4 signaling, and other inflammatory pathways in the genesis or modulation of epilepsy after brain injury. The wealth of commonalities, diversity of molecular targets identified preclinically, and likely multidimensional nature of epileptogenesis argue for a combinatorial strategy in prevention therapy. Going forward, the identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.


Subject(s)
Brain Injuries/complications , Disease Models, Animal , Epilepsy/etiology , Translational Research, Biomedical , Animals , Brain Injuries/classification , Humans
14.
Epilepsia ; 58(12): 2013-2024, 2017 12.
Article in English | MEDLINE | ID: mdl-28960286

ABSTRACT

The World Health Organization estimates that globally 2.4 million people are diagnosed with epilepsy each year. In nearly 30% of these cases, epilepsy cannot be properly controlled by antiepileptic drugs. More importantly, treatments to prevent or modify epileptogenesis do not exist. Therefore, novel therapies are urgently needed. In this respect, it is important to identify which patients will develop epilepsy and which individually tailored treatment is needed. However, currently, we have no tools to identify the patients at risk, and diagnosis of epileptogenesis remains as a major unmet medical need, which relates to lack of diagnostic biomarkers for epileptogenesis. As the epileptogenic process in humans is typically slow, the use of animal models is justified to speed up biomarker discovery. We aim to summarize recommendations for molecular biomarker research and propose a standardized procedure for biomarker discovery in rat models of epileptogenesis. The potential of many phylogenetically conserved circulating noncoding small RNAs, including microRNAs (miRNAs), as biomarkers has been explored in various brain diseases, including epilepsy. Recent studies show the feasibility of detecting miRNAs in blood in both experimental models and human epilepsy. However, the analysis of circulating miRNAs in rodent models is challenging, which relates both to the lack of standardized sampling protocols and to analysis of miRNAs. We will discuss the issues critical for preclinical plasma biomarker discovery, such as documentation, blood and brain tissue sampling and collection, plasma separation and storage, RNA extraction, quality control, and RNA detection. We propose a protocol for standardization of procedures for discovery of circulating miRNA biomarkers in rat models of epileptogenesis. Ultimately, we hope that the preclinical standardization will facilitate clinical biomarker discovery for epileptogenesis in man.


Subject(s)
Biomarkers/blood , Epilepsy/blood , MicroRNAs/blood , Rats/physiology , Animals , Computational Biology , Disease Models, Animal , Epilepsy/genetics , Humans , MicroRNAs/genetics , Reference Standards
15.
Epilepsy Behav ; 60: 187-196, 2016 07.
Article in English | MEDLINE | ID: mdl-27208924

ABSTRACT

Binding of the extracellular matrix proteinase urokinase-type plasminogen activator (uPA) to its receptor, uPAR, regulates tissue remodeling during development and after injury in different organs, including the brain. Accordingly, mutations in the Plaur gene, which encodes uPAR, have been linked to language deficits, autism, and epilepsy, both in mouse and human. Whether uPAR deficiency modulates epileptogenesis and comorbidogenesis after brain injury, however, is unknown. To address this question, we induced traumatic brain injury (TBI) by controlled cortical impact (CCI) in 10 wild-type (Wt-CCI) and 16 Plaur-deficient (uPAR-CCI) mice. Sham-operated mice served as controls (10 Wt-sham, 10 uPAR-sham). During the 4-month follow-up, the mice were neurophenotyped by assessing the somatomotor performance with the composite neuroscore test, emotional learning and memory with fear conditioning to tone and context, and epileptogenesis with videoelectroencephalography monitoring and the pentylenetetrazol (PTZ) seizure susceptibility test. At the end of the testing, the mice were perfused for histology to analyze cortical and hippocampal neurodegeneration and mossy fiber sprouting. Fourteen percent (1/7) of the mice in the Wt-CCI and 0% in the uPAR-CCI groups developed spontaneous seizures (p>0.05; chi-square). Both the Wt-CCI and uPAR-CCI groups showed increased seizure susceptibility in the PTZ test (p<0.05), impaired recovery of motor function (p<0.001), and neurodegeneration in the hippocampus and cortex (p<0.05) compared with the corresponding sham-operated controls. Motor recovery and emotional learning showed a genotype effect, being more impaired in uPAR-CCI than in Wt-CCI mice (p<0.05). The findings of the present study indicate that uPAR deficiency does not increase susceptibility to epileptogenesis after CCI injury but has an unfavorable comorbidity-modifying effect after TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Epilepsy/metabolism , Receptors, Urokinase Plasminogen Activator/deficiency , Animals , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Disease Susceptibility , Epilepsy/genetics , Epilepsy/pathology , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Urokinase Plasminogen Activator/genetics , Seizures/genetics , Seizures/metabolism , Seizures/pathology
16.
Epilepsy Behav ; 51: 19-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253597

ABSTRACT

Several components of the urokinase-type plasminogen activator receptor (uPAR)-interactome, including uPAR and its ligand sushi-repeat protein 2, X-linked (SRPX2), are linked to susceptibility to epileptogenesis in animal models and/or humans. Recent evidence indicates that urokinase-type plasminogen activator (uPA), a uPAR ligand with focal proteinase activity in the extracellular matrix, contributes to recovery-enhancing brain plasticity after various epileptogenic insults such as traumatic brain injury (TBI) and status epilepticus. Here, we examined whether deficiency of the uPA-encoding gene Plau augments epileptogenesis after TBI. Traumatic brain injury was induced by controlled cortical impact in the somatosensory cortex of adult male wild-type and Plau-deficient mice. Development of epilepsy and seizure susceptibility were assessed with a 3-week continuous video-electroencephalography monitoring and a pentylenetetrazol test, respectively. Traumatic brain injury-induced cortical or hippocampal pathology did not differ between genotypes. The pentylenetetrazol test revealed increased seizure susceptibility after TBI (p<0.05) in injured mice. Epileptogenesis was not exacerbated, however, in Plau-deficient mice. Taken together, Plau deficiency did not worsen controlled cortical impact-induced brain pathology or epileptogenesis caused by TBI when assessed at chronic timepoints. These data expand previous observations on Plau deficiency in models of status epilepticus and suggest that inhibition of focal extracellular proteinase activity resulting from uPA-uPAR interactions does not modify epileptogenesis after TBI.


Subject(s)
Brain Injuries/enzymology , Epilepsy/enzymology , Urokinase-Type Plasminogen Activator/deficiency , Urokinase-Type Plasminogen Activator/physiology , Animals , Brain Injuries/complications , Disease Models, Animal , Disease Susceptibility , Epilepsy/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Epilepsy Res ; 200: 107301, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244466

ABSTRACT

OBJECTIVE: To assess the prevalence of brain abscesses as a confounding factor for the diagnosis of post-traumatic epilepsy (PTE) in a rat model of lateral fluid-percussion-induced (FPI) traumatic brain injury (TBI). METHODS: This retrospective study included 583 rats from 3 study cohorts collected over 2009-2022 in a single laboratory. The rats had undergone sham-operation or TBI using lateral FPI. Rats were implanted with epidural and/or intracerebral electrodes for electroencephalogram recordings. Brains were processed for histology to screen for abscess(es). In abscess cases, (a) unfolded cortical maps were constructed to assess the cortical location and area of the abscess, (b) the abscess tissue was Gram stained to determine the presence of gram-positive and gram-negative bacteria, and (c) immunostaining was performed to detect infiltrating neutrophils, T-lymphocytes, and glial cells as tissue biomarkers of inflammation. In vivo and/or ex vivo magnetic resonance images available from a subcohort of animals were reviewed to evaluate the presence of abscesses. Plasma samples available from a subcohort of rats were used for enzyme-linked immunosorbent assays to determine the levels of lipopolysaccharide (LPS) as a circulating biomarker for gram-negative bacteria. RESULTS: Brain abscesses were detected in 2.6% (15/583) of the rats (6 sham, 9 TBI). In histology, brain abscesses were characterized as vascularized encapsulated lesions filled with neutrophils and surrounded by microglia/macrophages and astrocytes. The abscesses were mainly located under the screw electrodes, support screws, or craniectomy. Epilepsy was diagnosed in 60% (9/15) of rats with an abscess (4 sham, 5 TBI). Of these, 67% (6/9) had seizure clusters. The average seizure frequency in abscess cases was 0.436 ± 0.281 seizures/d. Plasma LPS levels were comparable between rats with and without abscesses (p > 0.05). SIGNIFICANCE: Although rare, a brain abscess is a potential confounding factor for epilepsy diagnosis in animal models of structural epilepsies following brain surgery and electrode implantation, particularly if seizures occur in sham-operated experimental controls and/or in clusters.


Subject(s)
Brain Abscess , Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Rats , Animals , Epilepsy, Post-Traumatic/pathology , Percussion/methods , Retrospective Studies , Anti-Bacterial Agents , Lipopolysaccharides , Rats, Sprague-Dawley , Gram-Negative Bacteria , Gram-Positive Bacteria , Brain Injuries, Traumatic/complications , Seizures/etiology , Epilepsy/etiology , Brain Abscess/diagnostic imaging , Disease Models, Animal
18.
Epilepsy Res ; 199: 107263, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056191

ABSTRACT

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Rats , Biomarkers , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Epilepsy/etiology , Epilepsy/diagnosis , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/drug therapy , Seizures , Multicenter Studies as Topic
19.
Neurotrauma Rep ; 4(1): 359-366, 2023.
Article in English | MEDLINE | ID: mdl-37284699

ABSTRACT

Traumatic brain injury (TBI) damages the glymphatic-lymphatic system. We hypothesized that brain injury associated with trauma results in the enrichment of brain-relevant proteins in deep cervical lymph nodes (DCLNs), the end station of meningeal lymphatic vessels, and that some of these proteins will present mechanistic tissue biomarkers for TBI. Proteomes of rat DCLNs were investigated in the left DCLN (ipsilateral to injury) and right DCLN at 6.5 months after severe TBI induced by lateral fluid percussion injury or after sham operation. DCLN proteomes were identified using sequential window acquisition of all theoretical mass spectra. Group comparisons, together with functional protein annotation analyses, were used to identify regulated protein candidates for further validation and pathway analyses. Validation of a selected candidate was assessed using enzyme-linked immunosorbent assay. Analysis comparing post-TBI animals with sham-operated controls revealed 25 upregulated and 16 downregulated proteins in the ipsilateral DCLN and 20 upregulated and 28 downregulated proteins in the contralateral DCLN of post-TBI animals. Protein class and function analyses highlighted the dysregulation of enzymes and binding proteins. Pathway analysis indicated an increase in autophagy. Biomarker analysis suggested that a subgroup of post-TBI animals had an increase in zonula occludens-1 coexpressed with proteins linked to molecular transport and amyloid precursor protein. We propose here that, after TBI, a subgroup of animals exhibit dysregulation of the TBI-relevant protein interactome in DCLNs, and that DCLNs might thus serve as an interesting biomarker source in future studies aiming to elucidate pathological brain functioning.

20.
Epilepsy Res ; 195: 107201, 2023 09.
Article in English | MEDLINE | ID: mdl-37562146

ABSTRACT

Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.


Subject(s)
Epilepsy, Post-Traumatic , Epilepsy , Animals , Epilepsy, Post-Traumatic/drug therapy , Diffusion Tensor Imaging , Magnetic Resonance Imaging , Biomarkers , Brain/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL