Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 32(10): 1647-1659, 2023 05 05.
Article in English | MEDLINE | ID: mdl-36621975

ABSTRACT

The shaker rat carries a naturally occurring mutation leading to progressive ataxia characterized by Purkinje cell (PC) loss. We previously reported on fine-mapping the shaker locus to the long arm of the rat X chromosome. In this work, we sought to identify the mutated gene underlying the shaker phenotype and confirm its identity by functional complementation. We fine-mapped the candidate region and analyzed cerebellar transcriptomes, identifying a XM_217630.9 (Slc9a6):c.[191_195delinsA] variant in the Slc9a6 gene that segregated with disease. We generated an adeno-associated virus (AAV) targeting Slc9a6 expression to PCs using the mouse L7-6 (L7) promoter. We administered the AAV prior to the onset of PC degeneration through intracerebroventricular injection and found that it reduced the shaker motor, molecular and cellular phenotypes. Therefore, Slc9a6 is mutated in shaker and AAV-based gene therapy may be a viable therapeutic strategy for Christianson syndrome, also caused by Slc9a6 mutation.


Subject(s)
Cerebellar Ataxia , Intellectual Disability , Rats , Mice , Animals , Purkinje Cells , Cerebellar Ataxia/genetics , Ataxia/genetics , Mutation , Intellectual Disability/genetics
2.
Ann Neurol ; 93(2): 398-416, 2023 02.
Article in English | MEDLINE | ID: mdl-36151701

ABSTRACT

OBJECTIVE: The mechanistic target of rapamycin (mTOR) kinase is one of the master coordinators of cellular stress responses, regulating metabolism, autophagy, and apoptosis. We recently reported that staufen1 (STAU1), a stress granule (SG) protein, was overabundant in fibroblast cell lines from patients with spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis, frontotemporal degeneration, Huntington's, Alzheimer's, and Parkinson's diseases as well as animal models, and patient tissues. STAU1 overabundance is associated with mTOR hyperactivation and links SG formation with autophagy. Our objective was to determine the mechanism of mTOR regulation by STAU1. METHODS: We determined STAU1 abundance with disease- and chemical-induced cellular stressors in patient cells and animal models. We also used RNA-binding assays to contextualize STAU1 interaction with MTOR mRNA. RESULTS: STAU1 and mTOR were overabundant in bacterial artificial chromosome (BAC)-C9ORF72, ATXN2Q127 , and Thy1-TDP-43 transgenic mouse models. Reducing STAU1 levels in these mice normalized mTOR levels and activity and autophagy-related marker proteins. We also saw increased STAU1 levels in HEK293 cells transfected to express C9ORF72-relevant dipeptide repeats (DPRs). Conversely, DPR accumulations were not observed in cells treated by STAU1 RNA interference (RNAi). Overexpression of STAU1 in HEK293 cells increased mTOR levels through direct MTOR mRNA interaction, activating downstream targets and impairing autophagic flux. Targeting mTOR by rapamycin or RNAi normalized STAU1 abundance in an SCA2 cellular model. INTERPRETATION: STAU1 interaction with mTOR drives its hyperactivation and inhibits autophagic flux in multiple models of neurodegeneration. Staufen, therefore, constitutes a novel target to modulate mTOR activity and autophagy, and for the treatment of neurodegenerative diseases. ANN NEUROL 2023;93:398-416.


Subject(s)
Spinocerebellar Ataxias , TOR Serine-Threonine Kinases , Humans , Mice , Animals , C9orf72 Protein , HEK293 Cells , TOR Serine-Threonine Kinases/metabolism , Mice, Transgenic , Autophagy , RNA, Messenger , Sirolimus , Cytoskeletal Proteins/genetics , RNA-Binding Proteins/metabolism
3.
Cerebellum ; 23(4): 1411-1425, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38165578

ABSTRACT

The Cerebellar Cognitive Affective/Schmahmann Syndrome (CCAS) manifests as impaired executive control, linguistic processing, visual spatial function, and affect regulation. The CCAS has been described in the spinocerebellar ataxias (SCAs), but its prevalence is unknown. We analyzed results of the CCAS/Schmahmann Scale (CCAS-S), developed to detect and quantify CCAS, in two natural history studies of 309 individuals Symptomatic for SCA1, SCA2, SCA3, SCA6, SCA7, or SCA8, 26 individuals Pre-symptomatic for SCA1 or SCA3, and 37 Controls. We compared total raw scores, domain scores, and total fail scores between Symptomatic, Pre-symptomatic, and Control cohorts, and between SCA types. We calculated scale sensitivity and selectivity based on CCAS category designation among Symptomatic individuals and Controls, and correlated CCAS-S performance against age and education, and in Symptomatic patients, against genetic repeat length, onset age, disease duration, motor ataxia, depression, and fatigue. Definite CCAS was identified in 46% of the Symptomatic group. False positive rate among Controls was 5.4%. Symptomatic individuals had poorer global CCAS-S performance than Controls, accounting for age and education. The domains of semantic fluency, phonemic fluency, and category switching that tap executive function and linguistic processing consistently separated Symptomatic individuals from Controls. CCAS-S scores correlated most closely with motor ataxia. Controls were similar to Pre-symptomatic individuals whose nearness to symptom onset was unknown. The use of the CCAS-S identifies a high CCAS prevalence in a large cohort of SCA patients, underscoring the utility of the scale and the notion that the CCAS is the third cornerstone of clinical ataxiology.


Subject(s)
Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/psychology , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/physiopathology , Male , Female , Middle Aged , Adult , Aged , Executive Function/physiology , Neuropsychological Tests , Cognition Disorders/diagnosis , Cognition Disorders/psychology , Cohort Studies
4.
J Biol Chem ; 298(8): 102228, 2022 08.
Article in English | MEDLINE | ID: mdl-35787375

ABSTRACT

CAG repeat expansions in the ATXN2 (ataxin-2) gene can cause the autosomal dominant disorder spinocerebellar ataxia type 2 (SCA2) as well as increase the risk of ALS. Abnormal molecular, motor, and neurophysiological phenotypes in SCA2 mouse models are normalized by lowering ATXN2 transcription, and reduction of nonmutant Atxn2 expression has been shown to increase the life span of mice overexpressing the TDP-43 (transactive response DNA-binding protein 43 kDa) ALS protein, demonstrating the potential benefits of targeting ATXN2 transcription in humans. Here, we describe a quantitative high-throughput screen to identify compounds that lower ATXN2 transcription. We screened 428,759 compounds in a multiplexed assay using an ATXN2-luciferase reporter in human embryonic kidney 293 (HEK-293) cells and identified a diverse set of compounds capable of lowering ATXN2 transcription. We observed dose-dependent reductions of endogenous ATXN2 in HEK-293 cells treated with procillaridin A, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), and heat shock protein 990 (HSP990), known inhibitors of HSP90 and Na+/K+-ATPases. Furthermore, HEK-293 cells expressing polyglutamine-expanded ATXN2-Q58 treated with 17-DMAG had minimally detectable ATXN2, as well as normalized markers of autophagy and endoplasmic reticulum stress, including STAU1 (Staufen 1), molecular target of rapamycin, p62, LC3-II (microtubule-associated protein 1A/1B-light chain 3II), CHOP (C/EBP homologous protein), and phospho-eIF2α (eukaryotic initiation factor 2α). Finally, bacterial artificial chromosome ATXN2-Q22 mice treated with 17-DMAG or HSP990 exhibited highly reduced ATXN2 protein abundance in the cerebellum. Taken together, our study demonstrates inhibition of HSP90 or Na+/K+-ATPases as potentially effective therapeutic strategies for treating SCA2 and ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Spinocerebellar Ataxias , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Ataxin-2/genetics , Cerebellum/metabolism , Cytoskeletal Proteins/metabolism , HEK293 Cells , Humans , RNA-Binding Proteins/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/genetics
5.
Cerebellum ; 22(5): 790-809, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35962273

ABSTRACT

Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion - maximum normal repeat length) /maximum normal repeat length) × (current age - age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.


Subject(s)
Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/epidemiology , Patient Acuity , Disease Progression
6.
Nature ; 544(7650): 367-371, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28405022

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that is characterized by motor neuron loss and that leads to paralysis and death 2-5 years after disease onset. Nearly all patients with ALS have aggregates of the RNA-binding protein TDP-43 in their brains and spinal cords, and rare mutations in the gene encoding TDP-43 can cause ALS. There are no effective TDP-43-directed therapies for ALS or related TDP-43 proteinopathies, such as frontotemporal dementia. Antisense oligonucleotides (ASOs) and RNA-interference approaches are emerging as attractive therapeutic strategies in neurological diseases. Indeed, treatment of a rat model of inherited ALS (caused by a mutation in Sod1) with ASOs against Sod1 has been shown to substantially slow disease progression. However, as SOD1 mutations account for only around 2-5% of ALS cases, additional therapeutic strategies are needed. Silencing TDP-43 itself is probably not appropriate, given its critical cellular functions. Here we present a promising alternative therapeutic strategy for ALS that involves targeting ataxin-2. A decrease in ataxin-2 suppresses TDP-43 toxicity in yeast and flies, and intermediate-length polyglutamine expansions in the ataxin-2 gene increase risk of ALS. We used two independent approaches to test whether decreasing ataxin-2 levels could mitigate disease in a mouse model of TDP-43 proteinopathy. First, we crossed ataxin-2 knockout mice with TDP-43 (also known as TARDBP) transgenic mice. The decrease in ataxin-2 reduced aggregation of TDP-43, markedly increased survival and improved motor function. Second, in a more therapeutically applicable approach, we administered ASOs targeting ataxin-2 to the central nervous system of TDP-43 transgenic mice. This single treatment markedly extended survival. Because TDP-43 aggregation is a component of nearly all cases of ALS, targeting ataxin-2 could represent a broadly effective therapeutic strategy.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Ataxin-2/deficiency , DNA-Binding Proteins/metabolism , Longevity , Oligonucleotides, Antisense/therapeutic use , Protein Aggregation, Pathological/therapy , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Ataxin-2/genetics , Central Nervous System/metabolism , Cytoplasmic Granules/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Disease Progression , Female , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Motor Skills/physiology , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Protein Aggregation, Pathological/genetics , Stress, Physiological , Survival Analysis
7.
Nature ; 544(7650): 362-366, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28405024

ABSTRACT

There are no disease-modifying treatments for adult human neurodegenerative diseases. Here we test RNA-targeted therapies in two mouse models of spinocerebellar ataxia type 2 (SCA2), an autosomal dominant polyglutamine disease. Both models recreate the progressive adult-onset dysfunction and degeneration of a neuronal network that are seen in patients, including decreased firing frequency of cerebellar Purkinje cells and a decline in motor function. We developed a potential therapy directed at the ATXN2 gene by screening 152 antisense oligonucleotides (ASOs). The most promising oligonucleotide, ASO7, downregulated ATXN2 mRNA and protein, which resulted in delayed onset of the SCA2 phenotype. After delivery by intracerebroventricular injection to ATXN2-Q127 mice, ASO7 localized to Purkinje cells, reduced cerebellar ATXN2 expression below 75% for more than 10 weeks without microglial activation, and reduced the levels of cerebellar ATXN2. Treatment of symptomatic mice with ASO7 improved motor function compared to saline-treated mice. ASO7 had a similar effect in the BAC-Q72 SCA2 mouse model, and in both mouse models it normalized protein levels of several SCA2-related proteins expressed in Purkinje cells, including Rgs8, Pcp2, Pcp4, Homer3, Cep76 and Fam107b. Notably, the firing frequency of Purkinje cells returned to normal even when treatment was initiated more than 12 weeks after the onset of the motor phenotype in BAC-Q72 mice. These findings support ASOs as a promising approach for treating some human neurodegenerative diseases.


Subject(s)
Oligonucleotides, Antisense/therapeutic use , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Action Potentials , Animals , Ataxin-2/deficiency , Ataxin-2/genetics , Ataxin-2/metabolism , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Male , Mice , Mice, Transgenic , Movement , Phenotype , Purkinje Cells/metabolism , Purkinje Cells/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rotarod Performance Test , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/physiopathology
8.
J Biol Chem ; 297(4): 101191, 2021 10.
Article in English | MEDLINE | ID: mdl-34520759

ABSTRACT

Accumulation of α-synuclein is a main underlying pathological feature of Parkinson's disease and α-synucleinopathies, for which lowering expression of the α-synuclein gene (SNCA) is a potential therapeutic avenue. Using a cell-based luciferase reporter of SNCA expression we performed a quantitative high-throughput screen of 155,885 compounds and identified A-443654, an inhibitor of the multiple functional kinase AKT, as a potent inhibitor of SNCA. HEK-293 cells with CAG repeat expanded ATXN2 (ATXN2-Q58 cells) have increased levels of α-synuclein. We found that A-443654 normalized levels of both SNCA mRNA and α-synuclein monomers and oligomers in ATXN2-Q58 cells. A-443654 also normalized levels of α-synuclein in fibroblasts and iPSC-derived dopaminergic neurons from a patient carrying a triplication of the SNCA gene. Analysis of autophagy and endoplasmic reticulum stress markers showed that A-443654 successfully prevented α-synuclein toxicity and restored cell function in ATXN2-Q58 cells, normalizing the levels of mTOR, LC3-II, p62, STAU1, BiP, and CHOP. A-443654 also decreased the expression of DCLK1, an inhibitor of α-synuclein lysosomal degradation. Our study identifies A-443654 and AKT inhibition as a potential strategy for reducing SNCA expression and treating Parkinson's disease pathology.


Subject(s)
Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation/drug effects , Indazoles/pharmacology , Indoles/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , alpha-Synuclein/biosynthesis , HEK293 Cells , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , alpha-Synuclein/genetics
9.
Hum Mol Genet ; 29(10): 1658-1672, 2020 06 27.
Article in English | MEDLINE | ID: mdl-32307524

ABSTRACT

The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Ataxin-2/genetics , DNA-Binding Proteins/genetics , Spinocerebellar Ataxias/genetics , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Ataxin-2/antagonists & inhibitors , Cerebellum/metabolism , Cerebellum/pathology , Disease Models, Animal , Humans , Mice , Motor Neurons/pathology , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Spinal Cord/metabolism , Spinal Cord/pathology , Spinocerebellar Ataxias/pathology , Transcriptome/genetics
10.
Hum Mol Genet ; 29(19): 3249-3265, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32964235

ABSTRACT

Selective neuronal vulnerability in neurodegenerative disease is poorly understood. Using the ATXN1[82Q] model of spinocerebellar ataxia type 1 (SCA1), we explored the hypothesis that regional differences in Purkinje neuron degeneration could provide novel insights into selective vulnerability. ATXN1[82Q] Purkinje neurons from the anterior cerebellum were found to degenerate earlier than those from the nodular zone, and this early degeneration was associated with selective dysregulation of ion channel transcripts and altered Purkinje neuron spiking. Efforts to understand the basis for selective dysregulation of channel transcripts revealed modestly increased expression of the ATXN1 co-repressor Capicua (Cic) in anterior cerebellar Purkinje neurons. Importantly, disrupting the association between ATXN1 and Cic rescued the levels of these ion channel transcripts, and lentiviral overexpression of Cic in the nodular zone accelerated both aberrant Purkinje neuron spiking and neurodegeneration. These findings reinforce the central role for Cic in SCA1 cerebellar pathophysiology and suggest that only modest reductions in Cic are needed to have profound therapeutic impact in SCA1.


Subject(s)
Ataxin-1/metabolism , Ion Channel Gating , Neurons/pathology , Purkinje Cells/pathology , Repressor Proteins/metabolism , Spinocerebellar Ataxias/pathology , Animals , Ataxin-1/genetics , Female , Gene Knock-In Techniques , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Purkinje Cells/metabolism , Repressor Proteins/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism
11.
Ann Neurol ; 89(6): 1114-1128, 2021 06.
Article in English | MEDLINE | ID: mdl-33745139

ABSTRACT

OBJECTIVE: Mutations in the ATXN2 gene (CAG expansions ≥32 repeats) can be a rare cause of Parkinson's disease and amyotrophic lateral sclerosis (ALS). We recently reported that the stress granule (SG) protein Staufen1 (STAU1) was overabundant in neurodegenerative disorder spinocerebellar ataxia type 2 (SCA2) patient cells, animal models, and ALS-TDP-43 fibroblasts, and provided a link between SG formation and autophagy. We aimed to test if STAU1 overabundance has a role in the pathogenesis of other neurodegenerative diseases. METHODS: With multiple neurodegenerative patient-derived cell models, animal models, and human postmortem ALS tissue, we evaluate STAU1 function using biochemical and immunohistological analyses. RESULTS: We demonstrate STAU1 overabundance and increased total and phosphorylated mammalian target of rapamycin (mTOR) in fibroblast cells from patients with ALS with mutations in TDP-43, patients with dementia with PSEN1 mutations, a patient with parkinsonism with MAPT mutation, Huntington's disease (HD) mutations, and SCA2 mutations. Increased STAU1 levels and mTOR activity were seen in human ALS spinal cord tissues as well as in animal models. Changes in STAU1 and mTOR protein levels were post-transcriptional. Exogenous expression of STAU1 in wildtype cells was sufficient to activate mTOR and downstream targets and form SGs. Targeting STAU1 by RNAi normalized mTOR, suggesting a potential role for therapy in diseases associated with STAU1 overabundance. INTERPRETATION: STAU1 overabundance in neurodegeneration is a common phenomenon associated with hyperactive mTOR. Targeting STAU1 with ASOs or miRNA viral vectors may represent a novel, efficacious therapy for neurodegenerative diseases characterized by overabundant STAU1. ANN NEUROL 2021;89:1114-1128.


Subject(s)
Cytoskeletal Proteins/metabolism , Neurodegenerative Diseases/metabolism , RNA-Binding Proteins/metabolism , Animals , Humans , Mice , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism
12.
Cerebellum ; 21(3): 452-481, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34378174

ABSTRACT

Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.


Subject(s)
Quality of Life , Spinocerebellar Ataxias , Animals , Cerebellum/pathology , Consensus , Mice , Models, Animal , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy
13.
Mov Disord ; 36(11): 2519-2529, 2021 11.
Article in English | MEDLINE | ID: mdl-34390268

ABSTRACT

BACKGROUND: Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of a CAG repeat in Ataxin-2 (ATXN2) gene. The mutant ATXN2 protein with a polyglutamine tract is known to be toxic and contributes to the SCA2 pathogenesis. OBJECTIVE: Here, we tested the hypothesis that the mutant ATXN2 transcript with an expanded CAG repeat (expATXN2) is also toxic and contributes to SCA2 pathogenesis. METHODS: The toxic effect of expATXN2 transcripts on SK-N-MC neuroblastoma cells and primary mouse cortical neurons was evaluated by caspase 3/7 activity and nuclear condensation assay, respectively. RNA immunoprecipitation assay was performed to identify RNA binding proteins (RBPs) that bind to expATXN2 RNA. Quantitative PCR was used to examine if ribosomal RNA (rRNA) processing is disrupted in SCA2 and Huntington's disease (HD) human brain tissue. RESULTS: expATXN2 RNA induces neuronal cell death, and aberrantly interacts with RBPs involved in RNA metabolism. One of the RBPs, transducin ß-like protein 3 (TBL3), involved in rRNA processing, binds to both expATXN2 and expanded huntingtin (expHTT) RNA in vitro. rRNA processing is disrupted in both SCA2 and HD human brain tissue. CONCLUSION: These findings provide the first evidence of a contributory role of expATXN2 transcripts in SCA2 pathogenesis, and further support the role of expHTT transcripts in HD pathogenesis. The disruption of rRNA processing, mediated by aberrant interaction of RBPs with expATXN2 and expHTT transcripts, suggest a point of convergence in the pathogeneses of repeat expansion diseases with potential therapeutic implications. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
RNA , Spinocerebellar Ataxias , Animals , Ataxins/metabolism , Brain/pathology , Mice , Neurons/metabolism , RNA/metabolism , RNA-Binding Proteins/genetics , Spinocerebellar Ataxias/pathology
14.
Proc Natl Acad Sci U S A ; 115(52): E12407-E12416, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30530649

ABSTRACT

The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.


Subject(s)
Microfilament Proteins/metabolism , Neoplasm Proteins/metabolism , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/physiopathology , Animals , Ataxia/pathology , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Microfilament Proteins/genetics , Neoplasm Proteins/genetics , Proteins/metabolism , Purkinje Cells/physiology , Spinocerebellar Ataxias/metabolism , Spinocerebellar Degenerations/metabolism , Spinocerebellar Degenerations/physiopathology , src-Family Kinases/metabolism
15.
Am J Med Genet C Semin Med Genet ; 184(4): 1030-1041, 2020 12.
Article in English | MEDLINE | ID: mdl-33274544

ABSTRACT

We describe our experiences with organizing pro bono medical genetics and neurology outreach programs on several different resource-limited islands in the West Indies. Due to geographic isolation, small population sizes, and socioeconomic disparities, most Caribbean islands lack medical services for managing, diagnosing, and counseling individuals with genetic disorders. From 2015 to 2019, we organized 2-3 clinics per year on various islands in the Caribbean. We also organized a week-long clinic to provide evaluations for children suspected of having autism spectrum disorder. Consultations for over 100 different individuals with suspected genetic disorders were performed in clinics or during home visits following referral by locally registered physicians. When possible, follow-up visits were attempted. When available and appropriate, clinical samples were shipped to collaborating laboratories for molecular analysis. Laboratory tests included karyotyping, cytogenomic microarray analysis, exome sequencing, triplet repeat expansion testing, blood amino acid level determination, biochemical assaying, and metabolomic profiling. We believe that significant contributions to healthcare by genetics professionals can be made even if availability is limited. Visiting geneticists may help by providing continuing medical education seminars. Clinical teaching rounds help to inform local physicians regarding the management of genetic disorders with the aim of generating awareness of genetic conditions. Even when only periodically available, a visiting geneticist may benefit affected individuals, their families, their local physicians, and the community at large.


Subject(s)
Autism Spectrum Disorder , Physicians , Child , Delivery of Health Care , Humans , Referral and Consultation , West Indies
16.
Hum Mol Genet ; 27(8): 1396-1410, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29432535

ABSTRACT

Among the many types of neurons expressing protein kinase C (PKC) enzymes, cerebellar Purkinje neurons are particularly reliant on appropriate PKC activity for maintaining homeostasis. The importance of PKC enzymes in Purkinje neuron health is apparent as mutations in PRKCG (encoding PKCγ) cause cerebellar ataxia. PRKCG has also been identified as an important node in ataxia gene networks more broadly, but the functional role of PKC in other forms of ataxia remains unexplored, and the mechanisms by which PKC isozymes regulate Purkinje neuron health are not well understood. Here, we investigated how PKC activity influences neurodegeneration in inherited ataxia. Using mouse models of spinocerebellar ataxia type 1 (SCA1) and 2 (SCA2) we identify an increase in PKC-mediated substrate phosphorylation in two different forms of inherited cerebellar ataxia. Normalizing PKC substrate phosphorylation in SCA1 and SCA2 mice accelerates degeneration, suggesting that the increased activity observed in these models is neuroprotective. We also find that increased phosphorylation of PKC targets limits Purkinje neuron membrane excitability, suggesting that PKC activity may support Purkinje neuron health by moderating excitability. These data suggest a functional role for PKC enzymes in ataxia gene networks, and demonstrate that increased PKC activity is a protective modifier of degeneration in inherited cerebellar ataxia.


Subject(s)
Ataxin-1/genetics , Ataxin-2/genetics , Protein Kinase C/genetics , Purkinje Cells/enzymology , Spinocerebellar Ataxias/genetics , Animals , Ataxin-1/metabolism , Ataxin-2/metabolism , Cerebellum/enzymology , Cerebellum/pathology , Disease Models, Animal , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , Microtomy , Phosphorylation , Primary Cell Culture , Protein Kinase C/metabolism , Purkinje Cells/pathology , Signal Transduction , Spinocerebellar Ataxias/enzymology , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/prevention & control , Tissue Culture Techniques
17.
Ann Neurol ; 85(5): 681-690, 2019 05.
Article in English | MEDLINE | ID: mdl-30854718

ABSTRACT

OBJECTIVE: Degenerative cerebellar ataxias (DCAs) affect up to 1 in 5,000 people worldwide, leading to incoordination, tremor, and falls. Loss of Purkinje cells, nearly universal across DCAs, dysregulates the dentatothalamocortical network. To address the paucity of treatment strategies, we developed an electrical stimulation-based therapy for DCAs targeting the dorsal dentate nucleus. METHODS: We tested this therapeutic strategy in the Wistar Furth shaker rat model of Purkinje cell loss resulting in tremor and ataxia. We implanted shaker rats with stimulating electrodes targeted to the dorsal dentate nucleus and tested a spectrum of frequencies ranging from 4 to 180 Hz. RESULTS: Stimulation at 30 Hz most effectively reduced motor symptoms. Stimulation frequencies >100 Hz, commonly used for parkinsonism and essential tremor, worsened incoordination, and frequencies within the tremor physiologic range may worsen tremor. INTERPRETATION: Low-frequency deep cerebellar stimulation may provide a novel strategy for treating motor symptoms of degenerative cerebellar ataxias. Ann Neurol 2019;85:681-690.


Subject(s)
Cerebellar Ataxia/therapy , Cerebellum/physiology , Deep Brain Stimulation/methods , Electrodes, Implanted , Tremor/therapy , Animals , Cerebellar Ataxia/genetics , Cerebellar Ataxia/physiopathology , Deep Brain Stimulation/instrumentation , Purkinje Cells/physiology , Rats , Rats, Transgenic , Rats, Wistar , Tremor/genetics , Tremor/physiopathology
18.
Hum Mol Genet ; 26(20): 3935-3945, 2017 10 15.
Article in English | MEDLINE | ID: mdl-29016852

ABSTRACT

Alterations in Purkinje neuron firing often accompany ataxia, but the molecular basis for these changes is poorly understood. In a mouse model of spinocerebellar ataxia type 2 (SCA2), a progressive reduction in Purkinje neuron firing frequency accompanies cell atrophy. We investigated the basis for altered Purkinje neuron firing in SCA2. A reduction in the expression of large-conductance calcium-activated potassium (BK) channels and Kv3.3 voltage-gated potassium channels accompanies the inability of Purkinje neurons early in disease to maintain repetitive spiking. In association with prominent Purkinje neuron atrophy, repetitive spiking is restored, although at a greatly reduced firing frequency. In spite of a continued impairment in spike repolarization and a persistently reduced BK channel mediated afterhyperpolarization (AHP), repetitive spiking is maintained, through the increased activity of barium-sensitive potassium channels, most consistent with inwardly rectifying potassium (Kir) channels. Increased activity of Kir channels results in the generation of a novel AHP not seen in wild-type Purkinje neurons that also accounts for the reduced firing frequency late in disease. Homeostatic changes in Purkinje neuron morphology that help to preserve repetitive spiking can also therefore have deleterious consequences for spike frequency. These results suggest that the basis for spiking abnormalities in SCA2 differ depending on disease stage, and interventions targeted towards correcting potassium channel dysfunction in ataxia need to be tailored to the specific stage in the degenerative process.


Subject(s)
Purkinje Cells/metabolism , Spinocerebellar Ataxias/metabolism , Action Potentials , Animals , Ataxia/metabolism , Calcium/metabolism , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/physiology , Patch-Clamp Techniques , Potassium Channels/metabolism , Potassium Channels/physiology , Potassium Channels, Voltage-Gated/metabolism , Purkinje Cells/physiology , Spinocerebellar Ataxias/physiopathology
19.
Hum Mol Genet ; 26(16): 3069-3080, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28525545

ABSTRACT

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the ATXN2 gene. The repeat resides in an encoded region of the gene resulting in polyglutamine (polyQ) expansion which has been assumed to result in gain of function, predominantly, for the ATXN2 protein. We evaluated temporal cerebellar expression profiles by RNA sequencing of ATXN2Q127 mice versus wild-type (WT) littermates. ATXN2Q127 mice are characterized by a progressive motor phenotype onset, and have progressive cerebellar molecular and neurophysiological (Purkinje cell firing frequency) phenotypes. Our analysis revealed previously uncharacterized early and progressive abnormal patterning of cerebellar gene expression. Weighted Gene Coexpression Network Analysis revealed four gene modules that were significantly correlated with disease status, composed primarily of genes associated with GTPase signaling, calcium signaling and cell death. Of these genes, few overlapped with differentially expressed cerebellar genes that we identified in Atxn2-/- knockout mice versus WT littermates, suggesting that loss-of-function is not a significant component of disease pathology. We conclude that SCA2 is a disease characterized by gain of function for ATXN2.


Subject(s)
Gene Regulatory Networks , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Animals , Ataxin-2/genetics , Ataxin-2/metabolism , Ataxins/genetics , Base Sequence , Cerebellum/metabolism , Disease Models, Animal , Gain of Function Mutation , Gene Expression , Gene Expression Profiling , Mice , Mutation , Nerve Tissue Proteins/genetics , Purkinje Cells/metabolism , Sequence Analysis, RNA , Trinucleotide Repeats
20.
Mov Disord ; 34(8): 1112-1119, 2019 08.
Article in English | MEDLINE | ID: mdl-31283857

ABSTRACT

Currently, few disease-modifying therapies exist for degenerative movement disorders. Antisense oligonucleotides are small DNA oligonucleotides, usually encompassing ∼20 base pairs, that can potentially target any messenger RNA of interest. Antisense oligonucleotides often contain modifications to the phosphate backbone, the sugar moiety, and the nucleotide base. The development of antisense oligonucleotide therapies spinal muscular atrophy and Duchenne muscular dystrophy suggest potentially wide-ranging therapeutic applications for antisense oligonucleotides in neurology. Successes with these two diseases have heightened interest in academia and the pharmaceutical industry to develop antisense oligonucleotides for several movement disorders, including, spinocerebellar ataxias, Huntington's disease, and Parkinson's disease. Compared to small molecules, antisense oligonucleotide-based therapies have an advantage because the target disease gene sequence is the immediate path to identifying the therapeutically effective complementary antisense oligonucleotide. In this review we describe the different types of antisense oligonucleotide chemistries and their potential use for the treatment of human movement disorders. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Movement Disorders/drug therapy , Oligonucleotides, Antisense/therapeutic use , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/drug therapy , Frontotemporal Dementia/genetics , Humans , Huntington Disease/drug therapy , Huntington Disease/genetics , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/genetics , Morpholinos/therapeutic use , Movement Disorders/genetics , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/genetics , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL