Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
N Engl J Med ; 387(25): 2344-2355, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36546626

ABSTRACT

BACKGROUND: The DNA-repair enzyme Artemis is essential for rearrangement of T- and B-cell receptors. Mutations in DCLRE1C, which encodes Artemis, cause Artemis-deficient severe combined immunodeficiency (ART-SCID), which is poorly responsive to allogeneic hematopoietic-cell transplantation. METHODS: We carried out a phase 1-2 clinical study of the transfusion of autologous CD34+ cells, transfected with a lentiviral vector containing DCLRE1C, in 10 infants with newly diagnosed ART-SCID. We followed them for a median of 31.2 months. RESULTS: Marrow harvest, busulfan conditioning, and lentiviral-transduced CD34+ cell infusion produced the expected grade 3 or 4 adverse events. All the procedures met prespecified criteria for feasibility at 42 days after infusion. Gene-marked T cells were detected at 6 to 16 weeks after infusion in all the patients. Five of 6 patients who were followed for at least 24 months had T-cell immune reconstitution at a median of 12 months. The diversity of T-cell receptor ß chains normalized by 6 to 12 months. Four patients who were followed for at least 24 months had sufficient B-cell numbers, IgM concentration, or IgM isohemagglutinin titers to permit discontinuation of IgG infusions. Three of these 4 patients had normal immunization responses, and the fourth has started immunizations. Vector insertion sites showed no evidence of clonal expansion. One patient who presented with cytomegalovirus infection received a second infusion of gene-corrected cells to achieve T-cell immunity sufficient for viral clearance. Autoimmune hemolytic anemia developed in 4 patients 4 to 11 months after infusion; this condition resolved after reconstitution of T-cell immunity. All 10 patients were healthy at the time of this report. CONCLUSIONS: Infusion of lentiviral gene-corrected autologous CD34+ cells, preceded by pharmacologically targeted low-exposure busulfan, in infants with newly diagnosed ART-SCID resulted in genetically corrected and functional T and B cells. (Funded by the California Institute for Regenerative Medicine and the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT03538899.).


Subject(s)
Genetic Therapy , Severe Combined Immunodeficiency , Humans , Infant , Busulfan/therapeutic use , Genetic Therapy/adverse effects , Genetic Therapy/methods , Immunoglobulin M , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/therapy , DNA Repair Enzymes/deficiency , DNA Repair Enzymes/genetics , Antigens, CD34/administration & dosage , Antigens, CD34/immunology , Transplantation, Autologous/adverse effects , Transplantation, Autologous/methods , Lentivirus , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Genetic Vectors/therapeutic use , T-Lymphocytes/immunology , B-Lymphocytes/immunology
2.
N Engl J Med ; 375(22): 2165-2176, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27959755

ABSTRACT

BACKGROUND: Severe combined immunodeficiency (SCID) is characterized by arrested T-lymphocyte production and by B-lymphocyte dysfunction, which result in life-threatening infections. Early diagnosis of SCID through population-based screening of newborns can aid clinical management and help improve outcomes; it also permits the identification of previously unknown factors that are essential for lymphocyte development in humans. METHODS: SCID was detected in a newborn before the onset of infections by means of screening of T-cell-receptor excision circles, a biomarker for thymic output. On confirmation of the condition, the affected infant was treated with allogeneic hematopoietic stem-cell transplantation. Exome sequencing in the patient and parents was followed by functional analysis of a prioritized candidate gene with the use of human hematopoietic stem cells and zebrafish embryos. RESULTS: The infant had "leaky" SCID (i.e., a form of SCID in which a minimal degree of immune function is preserved), as well as craniofacial and dermal abnormalities and the absence of a corpus callosum; his immune deficit was fully corrected by hematopoietic stem-cell transplantation. Exome sequencing revealed a heterozygous de novo missense mutation, p.N441K, in BCL11B. The resulting BCL11B protein had dominant negative activity, which abrogated the ability of wild-type BCL11B to bind DNA, thereby arresting development of the T-cell lineage and disrupting hematopoietic stem-cell migration; this revealed a previously unknown function of BCL11B. The patient's abnormalities, when recapitulated in bcl11ba-deficient zebrafish, were reversed by ectopic expression of functionally intact human BCL11B but not mutant human BCL11B. CONCLUSIONS: Newborn screening facilitated the identification and treatment of a previously unknown cause of human SCID. Coupling exome sequencing with an evaluation of candidate genes in human hematopoietic stem cells and in zebrafish revealed that a constitutional BCL11B mutation caused human multisystem anomalies with SCID and also revealed a prethymic role for BCL11B in hematopoietic progenitors. (Funded by the National Institutes of Health and others.).


Subject(s)
Abnormalities, Multiple/genetics , Hematopoietic Stem Cells/physiology , Mutation, Missense , Repressor Proteins/genetics , Severe Combined Immunodeficiency/genetics , Tumor Suppressor Proteins/genetics , Animals , Brain/diagnostic imaging , Cell Movement , Disease Models, Animal , Gene Expression Regulation , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Humans , In Vitro Techniques , Infant, Newborn , Magnetic Resonance Imaging , Male , Neonatal Screening/methods , Receptors, Antigen, T-Cell , Repressor Proteins/deficiency , Repressor Proteins/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/metabolism , Zebrafish/growth & development
3.
Nature ; 488(7412): 508-511, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22801493

ABSTRACT

Although there has been much success in identifying genetic variants associated with common diseases using genome-wide association studies (GWAS), it has been difficult to demonstrate which variants are causal and what role they have in disease. Moreover, the modest contribution that these variants make to disease risk has raised questions regarding their medical relevance. Here we have investigated a single nucleotide polymorphism (SNP) in the TNFRSF1A gene, that encodes tumour necrosis factor receptor 1 (TNFR1), which was discovered through GWAS to be associated with multiple sclerosis (MS), but not with other autoimmune conditions such as rheumatoid arthritis, psoriasis and Crohn's disease. By analysing MS GWAS data in conjunction with the 1000 Genomes Project data we provide genetic evidence that strongly implicates this SNP, rs1800693, as the causal variant in the TNFRSF1A region. We further substantiate this through functional studies showing that the MS risk allele directs expression of a novel, soluble form of TNFR1 that can block TNF. Importantly, TNF-blocking drugs can promote onset or exacerbation of MS, but they have proven highly efficacious in the treatment of autoimmune diseases for which there is no association with rs1800693. This indicates that the clinical experience with these drugs parallels the disease association of rs1800693, and that the MS-associated TNFR1 variant mimics the effect of TNF-blocking drugs. Hence, our study demonstrates that clinical practice can be informed by comparing GWAS across common autoimmune diseases and by investigating the functional consequences of the disease-associated genetic variation.


Subject(s)
Genetic Predisposition to Disease/genetics , Multiple Sclerosis/chemically induced , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Alleles , Exons/genetics , Genome, Human/genetics , Genome-Wide Association Study , Genomics , Genotype , Humans , Multiple Sclerosis/drug therapy , RNA Splicing/genetics , Receptors, Tumor Necrosis Factor, Type I/analysis , Receptors, Tumor Necrosis Factor, Type I/metabolism , Solubility , Tumor Necrosis Factor-alpha/metabolism , United Kingdom
4.
J Clin Immunol ; 35(2): 135-46, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25627829

ABSTRACT

PURPOSE: A male infant developed generalized rash, intestinal inflammation and severe infections including persistent cytomegalovirus. Family history was negative, T cell receptor excision circles were normal, and engraftment of maternal cells was absent. No defects were found in multiple genes associated with severe combined immunodeficiency. A 9/10 HLA matched unrelated hematopoietic cell transplant (HCT) led to mixed chimerism with clinical resolution. We sought an underlying cause for this patient's immune deficiency and dysregulation. METHODS: Clinical and laboratory features were reviewed. Whole exome sequencing and analysis of genomic DNA from the patient, parents and 2 unaffected siblings was performed, revealing 2 MALT1 variants. With a host-specific HLA-C antibody, we assessed MALT1 expression and function in the patient's post-HCT autologous and donor lymphocytes. Wild type MALT1 cDNA was added to transformed autologous patient B cells to assess functional correction. RESULTS: The patient had compound heterozygous DNA variants affecting exon 10 of MALT1 (isoform a, NM_006785.3), a maternally inherited splice acceptor c.1019-2A > G, and a de novo deletion of c.1059C leading to a frameshift and premature termination. Autologous lymphocytes failed to express MALT1 and lacked NF-κB signaling dependent upon the CARMA1, BCL-10 and MALT1 signalosome. Transduction with wild type MALT1 cDNA corrected the observed defects. CONCLUSIONS: Our nonconsanguineous patient with early onset profound combined immunodeficiency and immune dysregulation due to compound heterozygous MALT1 mutations extends the clinical and immunologic phenotype reported in 2 prior families. Clinical cure was achieved with mixed chimerism after nonmyeloablative conditioning and HCT.


Subject(s)
Caspases/genetics , Hematopoietic Stem Cell Transplantation , Mutation , Neoplasm Proteins/genetics , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , Adult , Amino Acid Sequence , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Base Sequence , Caspases/metabolism , Cell Line, Transformed , Child , Child, Preschool , DNA Mutational Analysis , Female , Gene Expression , Humans , Immunophenotyping , Infant , Infant, Newborn , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/metabolism , Signal Transduction , Skin/pathology , Transplantation Chimera , Transplantation, Homologous
5.
J Immunol ; 189(3): 1253-64, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22753936

ABSTRACT

Absent T lymphocytes were unexpectedly found in homozygotes of a transgenic mouse from an unrelated project. T cell development did not progress beyond double-negative stage 1 thymocytes, resulting in a hypocellular, vestigial thymus. B cells were present, but NK cell number and B cell isotype switching were reduced. Transplantation of wild-type hematopoietic cells corrected the defect, which was traced to a deletion involving five contiguous genes at the transgene insertion site on chromosome 12C3. Complementation using bacterial artificial chromosome transgenesis implicated zinc finger BTB-POZ domain protein 1 (Zbtb1) in the immunodeficiency, confirming its role in T cell development and suggesting involvement in B and NK cell differentiation. Targeted disruption of Zbtb1 recapitulated the T(-)B(+)NK(-) SCID phenotype of the original transgenic animal. Knockouts for Zbtb1 had expanded populations of bone marrow hematopoietic stem cells and also multipotent and early lymphoid lineages, suggesting a differentiation bottleneck for common lymphoid progenitors. Expression of mRNA encoding Zbtb1, a predicted transcription repressor, was greatest in hematopoietic stem cells, thymocytes, and pre-B cells, highlighting its essential role in lymphoid development.


Subject(s)
Cell Differentiation/immunology , Lymphocyte Subsets/cytology , Lymphocyte Subsets/immunology , Repressor Proteins/physiology , Zinc Fingers/immunology , Animals , Cell Differentiation/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Lymphocyte Subsets/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Mice, Transgenic , NIH 3T3 Cells , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/immunology , Precursor Cells, B-Lymphoid/metabolism , Precursor Cells, T-Lymphoid/cytology , Precursor Cells, T-Lymphoid/immunology , Precursor Cells, T-Lymphoid/metabolism , RNA, Messenger/biosynthesis , Repressor Proteins/deficiency , Repressor Proteins/genetics
6.
Mol Genet Metab ; 107(3): 586-91, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23062576

ABSTRACT

T-cell receptor excision circles (TRECs) are circular DNA molecules formed during rearrangement of the T-cell receptor (TCR) genes during lymphocyte development. Copy number of the junctional portion of the δRec-ψJα TREC, assessed by quantitative PCR (qPCR) using DNA from dried blood spots (DBS), is a biomarker for newly formed T cells and absent or low numbers of TRECs indicate SCID (severe combined immunodeficiency) or T lymphocytopenia. No quantitation standard for TRECs exists. To permit comparison of TREC qPCR results with a reliable method for counting TRECs across different laboratories, we sought to construct a stable cell line containing a normal human chromosomal constitution and a single copy of the TREC junction sequence. A human EBV (Epstein Barr virus)-transformed B-cell line was transduced with a lentivirus encoding mCherry fluorescence, puromycin resistance and the δRec-ψJα TREC sequence. A TREC-EBV cell line, with each cell carrying a single lentiviral insertion was established, expanded and shown to have one TREC copy per diploid genome. Graded numbers of TREC-EBV cells added to aliquots of T lymphocyte depleted blood showed TREC copy number proportional to TREC-EBV cell number. TREC-EBV cells, therefore, constitute a reproducible cellular calibrator for TREC assays, useful for both population-based screening for severe combined immunodeficiency and evaluation of naïve T-cell production in clinical settings.


Subject(s)
DNA, Circular/analysis , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/pathology , B-Lymphocytes/metabolism , Biomarkers/analysis , Cell Line, Transformed , DNA Copy Number Variations , Dried Blood Spot Testing , Gene Rearrangement, T-Lymphocyte , Genes, Reporter , Genetic Vectors , Herpesvirus 4, Human/genetics , Humans , Infant, Newborn , Lentivirus/genetics , Lymphocyte Count , Lymphopenia/diagnosis , Lymphopenia/genetics , Lymphopenia/pathology , Neonatal Screening , Polymerase Chain Reaction , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/pathology , T-Lymphocytes/metabolism
8.
Hum Gene Ther ; 28(1): 112-124, 2017 01.
Article in English | MEDLINE | ID: mdl-27611239

ABSTRACT

During B and T lymphocyte maturation, V(D)J recombination is initiated by creation of DNA double-strand breaks. Artemis is an exonuclease essential for their subsequent repair by nonhomologous end-joining. Mutations in DCLRE1C, the gene encoding Artemis, cause T-B-NK+ severe combined immunodeficiency (ART-SCID) and also confer heightened sensitivity to ionizing radiation and alkylating chemotherapy. Although allogeneic hematopoietic cell transplantation can treat ART-SCID, conditioning regimens are poorly tolerated, leading to early mortality and/or late complications, including short stature, endocrinopathies, and dental aplasia. However, without alkylating chemotherapy as preconditioning, patients usually have graft rejection or limited T cell and no B cell recovery. Thus, addition of normal DCLRE1C cDNA to autologous hematopoietic stem cells is an attractive strategy to treat ART-SCID. We designed a self-inactivating lentivirus vector containing human Artemis cDNA under transcriptional regulation of the human endogenous Artemis promoter (AProArt). Fibroblasts from ART-SCID patients transduced with AProArt lentivirus showed correction of radiosensitivity. Mobilized peripheral blood CD34+ cells from an ART-SCID patient as well as hematopoietic stem cells from Artemis-deficient mice demonstrated restored T and B cell development following AProArt transduction. Murine hematopoietic cells transduced with AProArt exhibited no increase in replating potential in an in vitro immortalization assay, and analysis of AProArt lentivirus insertions showed no predilection for sites that could activate oncogenes. These efficacy and safety findings support institution of a clinical trial of gene addition therapy for ART-SCID.


Subject(s)
Endonucleases/genetics , Genetic Therapy , Genetic Vectors/administration & dosage , Lentivirus/genetics , Nuclear Proteins/genetics , Severe Combined Immunodeficiency/therapy , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , B-Lymphocytes/radiation effects , Cells, Cultured , Combined Modality Therapy , DNA Repair/radiation effects , DNA-Binding Proteins , Disease Models, Animal , Endonucleases/deficiency , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Gamma Rays , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/radiation effects , Humans , Mice , Mice, Knockout , Mice, SCID , Nuclear Proteins/deficiency , Radiation Tolerance/genetics , Severe Combined Immunodeficiency/genetics , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , T-Lymphocytes/radiation effects
9.
J Exp Med ; 213(2): 155-65, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26783323

ABSTRACT

A brother and sister developed a previously undescribed constellation of autoimmune manifestations within their first year of life, with uncontrollable bullous pemphigoid, colitis, and proteinuria. The boy had hemophilia due to a factor VIII autoantibody and nephrotic syndrome. Both children required allogeneic hematopoietic cell transplantation (HCT), which resolved their autoimmunity. The early onset, severity, and distinctive findings suggested a single gene disorder underlying the phenotype. Whole-exome sequencing performed on five family members revealed the affected siblings to be compound heterozygous for two unique missense mutations in the 70-kD T cell receptor ζ-chain associated protein (ZAP-70). Healthy relatives were heterozygous mutation carriers. Although pre-HCT patient T cells were not available, mutation effects were determined using transfected cell lines and peripheral blood from carriers and controls. Mutation R192W in the C-SH2 domain exhibited reduced binding to phosphorylated ζ-chain, whereas mutation R360P in the N lobe of the catalytic domain disrupted an autoinhibitory mechanism, producing a weakly hyperactive ZAP-70 protein. Although human ZAP-70 deficiency can have dysregulated T cells, and autoreactive mouse thymocytes with weak Zap-70 signaling can escape tolerance, our patients' combination of hypomorphic and activating mutations suggested a new disease mechanism and produced previously undescribed human ZAP-70-associated autoimmune disease.


Subject(s)
Autoimmune Diseases/enzymology , Autoimmune Diseases/genetics , Mutant Proteins/genetics , Mutation, Missense , ZAP-70 Protein-Tyrosine Kinase/genetics , Amino Acid Sequence , Animals , Autoimmune Diseases/immunology , Base Sequence , Cell Line , Child, Preschool , Female , Hematopoietic Stem Cell Transplantation , Hemophilia A/enzymology , Hemophilia A/genetics , Hemophilia A/immunology , Heterozygote , Humans , Infant , Male , Mice , Models, Molecular , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Pedigree , Pemphigoid, Bullous/enzymology , Pemphigoid, Bullous/genetics , Pemphigoid, Bullous/pathology , Phenotype , Protein Conformation , Receptors, Antigen, T-Cell/metabolism , Severe Combined Immunodeficiency/enzymology , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Siblings , Syndrome , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , Transplantation, Homologous , ZAP-70 Protein-Tyrosine Kinase/chemistry , ZAP-70 Protein-Tyrosine Kinase/deficiency , ZAP-70 Protein-Tyrosine Kinase/immunology , ZAP-70 Protein-Tyrosine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL